题目内容
【题目】如图,已知M(x0,y0)是椭圆C:+=1上的任一点,从原点O向圆M:(x-x0)2+(y-y0)2=2作两条切线,分别交椭圆于点P,Q.
(1)若直线OP,OQ的斜率存在,并记为k1,k2,求证:k1k2为定值;
(2)试问|OP|2+|OQ|2是否为定值?若是,求出该值;若不是,说明理由.
【答案】见解析
【解析】
解:(1)证明:因为直线OP:y=k1x,OQ:y=k2x与圆M相切,所以=,
化简得:(x-2)k-2x0y0k1+y-2=0,
同理:(x-2)k-2x0y0k2+y-2=0,
所以k1,k2是方程(x-2)k2-2x0y0k+y-2=0的两个不相等的实数根,
所以k1·k2=.
因为点M(x0,y0)在椭圆C上,所以+=1,即y=3-x,
所以k1k2==-为定值.
(2)|OP|2+|OQ|2是定值,定值为9.
理由如下:
方法一:①当直线OP,OQ不落在坐标轴上时,设P(x1,y1),Q(x2,y2),
联立解得
所以x+y=,同理得x+y=,
又因为k1k2=-,
所以|OP|2+|OQ|2=x+y+x+y
=+
=+
==9.
②当直线OP,OQ落在坐标轴上时,显然有|OP|2+|OQ|2=9,
综上:|OP|2+|OQ|2=9为定值.
方法二:①当直线OP,OQ不落在坐标轴上时,设P(x1,y1),Q(x2,y2),
因为k1k2=-,所以yy=xx,
因为P(x1,y1),Q(x2,y2)在椭圆C上,
所以即
所以
=xx,整理得x+x=6,
所以y+y=+=3,所以|OP|2+|OQ|2=9.
②当直线OP,OQ落在坐标轴上时,显然有|OP|2+|OQ|2=9,
综上:|OP|2+|OQ|2=9为定值.
练习册系列答案
相关题目