题目内容
【题目】如图,六面体ABCDHEFG中,四边形ABCD为菱形,AE,BF,CG,DH都垂直于平面ABCD.若DA=DH=DB=4,AE=CG=3。
(1)求证:EG⊥DF;
(2)求BE与平面EFGH所成角的正弦值.
【答案】见解析
【解析】
解:(1)证明:连接AC,由AE CG可知四边形AEGC为平行四边形.
所以EG∥AC,而AC⊥BD,AC⊥BF,所以EG⊥BD,EG⊥BF,
因为BD∩BF=B,所以EG⊥平面BDHF,又DF平面BDHF,所以EG⊥DF。
(2)设AC∩BD=O,EG∩HF=P,由已知可得:平面ADHE∥平面BCGF,所以EH∥FG,同理可得:EF∥HG,所以四边形EFGH为平行四边形,所以P为EG的中点,O为AC的中点,所以OP綊AE,
从而OP⊥平面ABCD,
又OA⊥OB,所以OA,OB,OP两两垂直,由平面几何知识,得BF=2。
如图,建立空间直角坐标系Oxyz,则B(0,2,0),E(2,0,3),F(0,2,2),P(0,0,3),
所以=(2,-2,3),=(2,0,0,),=(0,2,-1).
设平面EFGH的法向量为n=(x,y,z),
可得
令y=1,则z=2。
所以n=(0,1,2).
设BE与平面EFGH所成角为θ,则sin θ==。
【题目】为了研究“教学方式”对教学质量的影响,某高中数学老师分别用两种不同的教学方式对入学数学平均分数和优秀率都相同的甲、乙两个高一新班进行教学(勤奋程度和自觉性都一样).以下茎叶图为甲、乙两班(每班均为20人)学生的数学期末考试成绩.
(1)学校规定:成绩不低于75分的为优秀.请画出下面的列联表.
甲班 | 乙班 | 合计 | |
优秀 | |||
不优秀 | |||
合计 |
(2)判断有多大把握认为“成绩优秀与教学方式有关”.
下面临界值表仅供参考:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
参考公式: