题目内容
【题目】已知函数f(x)= ,方程f2(x)﹣af(x)+b=0(b≠0)有六个不同的实数解,则3a+b的取值范围是( )
A.[6,11]
B.[3,11]
C.(6,11)
D.(3,11)
【答案】B
【解析】解:作函数f(x)= 的图象如下,
∵关于x的方程f2(x)﹣af(x)+b=0有6个不同实数解,
令t=f(x),
∴t2﹣at+b=0有2个不同的正实数解,
其中一个为在(0,1)上,一个在(1,2)上;
故 ,
其对应的平面区域如下图所示:
故当a=3,b=2时,3a+b取最大值11,
当a=1,b=0时,3a+b取最小值3,
则3a+b的取值范围是[3,11]
故选:B
作函数f(x)= 的图象,从而利用数形结合知t2﹣at+b=0有2个不同的正实数解,且其中一个为1,从而可得﹣1﹣a>0且﹣1﹣a≠1;从而解得.
练习册系列答案
相关题目
【题目】兰天购物广场某营销部门随机抽查了100名市民在2018年国庆长假期间购物广场的消费金额,所得数据如表,已知消费金额不超过3千元与超过3千元的人数比恰为.
消费金额(单位:千元) | 人数 | 频率 |
8 | 0.08 | |
12 | 0.12 | |
8 | 0.08 | |
7 | 0.07 | |
合计 | 100 | 1.00 |
(1)试确定,,,的值,并补全频率分布直方图(如图);
(2)用分层抽样的方法从消费金额在、和的三个群体中抽取7人进行问卷调查,则各小组应抽取几人?若从这7人中随机选取2人,则此2人来自同一群体的概率是多少?