题目内容
【题目】已知函数f(x)=|2x﹣a|+a.
(1)若不等式f(x)≤6的解集为{x|﹣2≤x≤3},求实数a的值;
(2)在(1)的条件下,若存在实数n使f(n)≤m﹣f(﹣n)成立,求实数m的取值范围.
【答案】
(1)解:∵函数f(x)=|2x﹣a|+a,
故不等式f(x)≤6,
即 ,
求得 a﹣3≤x≤3.
再根据不等式的解集为{x|﹣2≤x≤3},
可得a﹣3=﹣2,
∴实数a=1
(2)解:在(1)的条件下,f(x)=|2x﹣1|+1,
∴f(n)=|2n﹣1|+1,存在实数n使f(n)≤m﹣f(﹣n)成立,
即f(n)+f(﹣n)≤m,即|2n﹣1|+|2n+1|+2≤m.
由于|2n﹣1|+|2n+1|≥|(2n﹣1)﹣(2n+1)|=2,
∴|2n﹣1|+|2n+1|的最小值为2,
∴m≥4,
故实数m的取值范围是[4,+∞)
【解析】(1)通过讨论x的范围,求得a﹣3≤x≤3.再根据不等式的解集为{x|﹣2≤x≤3},可得a﹣3=﹣2,从而求得实数a的值.(2)在(1)的条件下,f(n)=|2n﹣1|+1,即f(n)+f(﹣n)≤m,即|2n﹣1|+|2n+1|+2≤m.求得|2n﹣1|+|2n+1|的最小值为2,可得m的范围.
【题目】某家庭记录了未使用节水龙头50天的日用水量数据(单位:m3)和使用了节水龙头50天的日用水量数据,得到频数分布表如下:
未使用节水龙头50天的日用水量频数分布表
日用 水量 | |||||||
频数 | 1 | 3 | 2 | 4 | 9 | 26 | 5 |
使用了节水龙头50天的日用水量频数分布表
日用 水量 | ||||||
频数 | 1 | 5 | 13 | 10 | 16 | 5 |
(1)在答题卡上作出使用了节水龙头50天的日用水量数据的频率分布直方图:
(2)估计该家庭使用节水龙头后,日用水量小于0.35 m3的概率;
(3)估计该家庭使用节水龙头后,一年能节省多少水?(一年按365天计算,同一组中的数据以这组数据所在区间中点的值作代表.)