题目内容
【题目】对于函数,若定义域内存在实数,满足,则称为“局部奇函数”.
(1)已知二次函数,试判断是否为“局部奇函数”?并说明理由.
(2)设是定义在上的“局部奇函数”,求实数的取值范围;
(3)设,若不是定义域R上的“局部奇函数”,求实数的取值范围.
【答案】(1)为局部奇函数,详见解析(2)(3)或
【解析】
(1)由已知中“局部奇函数”的定义,结合函数f(x)=ax2+2bx﹣3a,可得结论;
(2)由题可知有解,,变量分离求值域即可;
(3)先考虑函数是定义域R上的“局部奇函数”,然后求补集即可.
(1),则得到有解,所以为局部奇函数.
(2)由题可知有解,,
设,所以,
所以.
(3)若为局部奇函数,则有解,
得,
设p=2x+2﹣x∈[2,+∞),
所以方程等价于p2﹣2mp+2m2﹣8=0在p≥2时有解.
设h(p)=p2﹣2mp+2m2﹣8,对称轴p=m,
①若m≥2,则△=4m2﹣4(2m2﹣8)≥0,即m2≤8,
∴,
此时;
②若m<2时,
则,即,
此时,
综上得:.
故若不为局部奇函数时或.
练习册系列答案
相关题目