题目内容
【题目】在平面直角坐标系xOy中,已知圆C:和点,,若在圆C上存在点P,使得,则半径r的取值范围是______.
【答案】
【解析】
点A(0,),B(0,),求出点P的轨迹方程,使得∠APB=60°,通过两个圆的位置关系转化成求解半径r的取值范围.
在平面直角坐标系xOy中,点A(0,),B(0,),使得∠APB=60°,
可知P在以AB为弦的一个圆上,圆的圆心在AB的中垂线即x轴上,半径为:2,由垂径定理可得圆心到y轴的距离为1,所以圆心坐标为(-1,0)或(1,0)
则P的方程为:(x﹣1)2+y2=22,
或:(x+1)2+y2=22,
已知圆C:(x﹣3)2+(y﹣4)2=r2,若在圆C上存在点P,使得∠APB=60°,
就是两个圆有公共点,可得:r+2,并且解得r∈[2,42].
故答案为:[2,42].
【题目】(2017·全国卷Ⅲ文,18)某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间[20,25),需求量为300瓶;如果最高气温低于20,需求量为200瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:
最高气温 | [10,15) | [15,20) | [20,25) | [25,30) | [30,35) | [35,40) |
天数 | 2 | 16 | 36 | 25 | 7 | 4 |
以最高气温位于各区间的频率估计最高气温位于该区间的概率.
(1)估计六月份这种酸奶一天的需求量不超过300瓶的概率;
(2)设六月份一天销售这种酸奶的利润为Y(单位:元).当六月份这种酸奶一天的进货量为450瓶时,写出Y的所有可能值,并估计Y大于零的概率.