题目内容
【题目】已知函数,曲线在点处的切线方程为
(1) 求的值;
(2) 证明: .
【答案】(1);(2)见解析
【解析】分析:第一问结合导数的几何意义以及切点在切线上也在函数图像上,从而建立关于的等量关系式,从而求得结果;第二问可以有两种方法,一是将不等式转化,构造新函数,利用导数研究函数的最值,从而求得结果,二是利用中间量来完成,这样利用不等式的传递性来完成,再者这种方法可以简化运算.
详解:(1)解:,由题意有,解得
(2)证明:(方法一)由(1)知,.设
则只需证明
,设
则, 在上单调递增
,
,使得
且当时,,当时,
当时,,单调递减
当时,,单调递增
,由,得,
,
设,,
当时,,在单调递减,
,因此
(方法二)先证当时, ,即证
设,则,且
,在单调递增,
在单调递增,则当时,
(也可直接分析 显然成立)
再证
设,则,令,得
且当时,,单调递减;
当时,,单调递增.
,即
又,
【题目】某企业有,两个分厂生产某种产品,规定该产品的某项质量指标值不低于130的为优质品.分别从,两厂中各随机抽取100件产品统计其质量指标值,得到如图频率分布直方图:
(1)根据频率分布直方图,分别求出分厂的质量指标值的众数和中位数的估计值;
(2)填写列联表,并根据列联表判断是否有的把握认为这两个分厂的产品质量有差异?
优质品 | 非优质品 | 合计 | |
合计 |
(3)(i)从分厂所抽取的100件产品中,利用分层抽样的方法抽取10件产品,再从这10件产品中随机抽取2件,已知抽到一件产品是优质品的条件下,求抽取的两件产品都是优质品的概率;
(ii)将频率视为概率,从分厂中随机抽取10件该产品,记抽到优质品的件数为,求的数学期望.
附:
0.100 | 0.050 | 0.025 | 0.010 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 10.828 |