题目内容
【题目】某企业有,两个分厂生产某种产品,规定该产品的某项质量指标值不低于130的为优质品.分别从,两厂中各随机抽取100件产品统计其质量指标值,得到如图频率分布直方图:
(1)根据频率分布直方图,分别求出分厂的质量指标值的众数和中位数的估计值;
(2)填写列联表,并根据列联表判断是否有的把握认为这两个分厂的产品质量有差异?
优质品 | 非优质品 | 合计 | |
合计 |
(3)(i)从分厂所抽取的100件产品中,利用分层抽样的方法抽取10件产品,再从这10件产品中随机抽取2件,已知抽到一件产品是优质品的条件下,求抽取的两件产品都是优质品的概率;
(ii)将频率视为概率,从分厂中随机抽取10件该产品,记抽到优质品的件数为,求的数学期望.
附:
0.100 | 0.050 | 0.025 | 0.010 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
【答案】(1)答案见解析;(2)答案见解析;(3)(i);(Ⅱ)答案见解析.
【解析】分析:第一问首先利用众数和中位数定义,得到直方图中最高的那条对应的组中值就是众数,利用中位数的两边对应的条的面积是相等的,求得中位数;结合题中的条件,填完列联表,之后应用公式求得的观测值,与表中的值相比较,得到是否有把握认为其有没有关系;第三问利用概率公式求得结果,分析变量的取值以及对应的概率列出分布列,应用离散型随机变量的分布列的期望公式求得结果.
详解:(1)分厂的质量指标值的众数的估计值为,
设分厂的质量指标值的中位数的估计值为,则
,解得.
(2)列联表:
优质品 | 非优质品 | 合计 | |
5 | 95 | 100 | |
20 | 80 | 100 | |
合计 | 25 | 175 | 200 |
由列联表可知的观测值为:
,
所以有的把握认为两个分厂的产品质量有差异.
(3)(i)依题意,厂的100个样本产品利用分层抽样的方法抽出10件产品中,优质品有2件,非优质品有8件,
设“从这10件产品中随机抽取2件,已知抽到一件产品是优质品”为事件,“从这10件产品中随机抽取2件,抽取的两件产品都是优质品”为事件,则,
所以已知抽到一件产品是优质品的条件下,抽取的两件产品都是优质品的概率是.
(ii)用频率估计概率,从分厂所有产品中任取一件产品是优质品的概率为0.20,所以随机变量服从二项分布,即,
则.
【题目】2018年为我国改革开放40周年,某事业单位共有职工600人,其年龄与人数分布表如下:
年龄段 | ||||
人数(单位:人) | 180 | 180 | 160 | 80 |
约定:此单位45岁~59岁为中年人,其余为青年人,现按照分层抽样抽取30人作为全市庆祝晚会的观众.
(1)抽出的青年观众与中年观众分别为多少人?
(2)若所抽取出的青年观众与中年观众中分别有12人和5人不热衷关心民生大事,其余人热衷关心民生大事.完成下列2×2列联表,并回答能否有90%的把握认为年龄层与热衷关心民生大事有关?
(3)若从热衷关心民生大事的青年观众(其中1人擅长歌舞,3人擅长乐器)中,随机抽取2人上台表演节目,则抽出的2人能胜任才艺表演的概率是多少?
.
【题目】某高校共有10000人,其中男生7500人,女生2500人,为调查该校学生每则平均体育运动时间的情况,采用分层抽样的方法,收集200位学生每周平均体育运动时间的样本数据(单位:小时).调查部分结果如下列联表:
男生 | 女生 | 总计 | |
每周平均体育运动时间不超过4小时 | 35 | ||
每周平均体育运动时间超过4小时 | 30 | ||
总计 | 200 |
(1)完成上述每周平均体育运动时间与性别的列联表,并判断是否有把握认为“该校学生的每周平均体育运动时间与性别有关”;
(2)已知在被调查的男生中,有5名数学系的学生,其中有2名学生每周平均体育运动时间超过4小时,现从这5名学生中随机抽取2人,求恰有1人“每周平均体育运动时间超过4小时”的概率.
附:,其中.
0.10 | 0.05 | 0.010 | 0.005 | |
2.706 | 3.841 | 6.635 | 7.879 |