题目内容
【题目】如图,已知点P是平行四边形ABCD所在平面外一点,M、N分别是AB、PC的中点.
(1)求证:MN∥平面PAD;
(2)在PB上确定一个点Q,使平面MNQ∥平面PAD.
【答案】(1)见解析;(2)见解析.
【解析】
(1)取PD的中点H,易证得AMNH为平行四边形,从而证得MN∥AH,即证得结论;
(2)由平面MNQ∥平面PAD,则应有MQ∥PA,利用中位线定理可确定位置.
(1)如图,取PD的中点H,
连接AH、NH.由N是PC的中点,H是PD的中点,知NH∥DC,NH=DC.
由M是AB的中点,知AM∥DC,AM=DC
.
∴NH∥AM,NH=AM,所以AMNH为平行四边形.
∴MN∥AH.
由MN平面PAD,AH平面PAD,
知MN∥平面PAD.
(2)若平面MNQ∥平面PAD,则应有MQ∥PA,
∵M是AB中点,∴Q是PB的中点.
即当Q为PB的中点时,平面MNQ∥平面PAD.
练习册系列答案
相关题目
【题目】在“新零售”模式的背景下,某大型零售公司咪推广线下分店,计划在市的区开设分店,为了确定在该区开设分店的个数,该公司对该市已开设分店听其他区的数据作了初步处理后得到下列表格.记表示在各区开设分店的个数, 表示这个个分店的年收入之和.
(个) | 2 | 3 | 4 | 5 | 6 |
(百万元) | 2.5 | 3 | 4 | 4.5 | 6 |
(1)该公司已经过初步判断,可用线性回归模型拟合与的关系,求关于的线性回归方程;
(2)假设该公司在区获得的总年利润(单位:百万元)与之间的关系为,请结合(1)中的线性回归方程,估算该公司应在区开设多少个分店时,才能使区平均每个店的年利润最大?
(参考公式: ,其中)