题目内容
【题目】已知椭圆: 的左、右焦点分别是、,离心率,过点的直线交椭圆于、两点, 的周长为16.
(1)求椭圆的方程;
(2)已知为原点,圆: ()与椭圆交于、两点,点为椭圆上一动点,若直线、与轴分别交于、两点,求证: 为定值.
【答案】(1) (2)见解析
【解析】试题分析:(1)根据的周长为16,可得,再根据离心率,得出,从而可得椭圆的方程;(2)根据圆及椭圆的对称性可得, 两点关于轴对称,设, ,则,从而得出直线的方程,即可得到点的横坐标,同理可得点的横坐标,从而列出的表达式,化简求值即可得到定值.
试题解析:(1)由题意得,则,
由,解得,
则,所以椭圆的方程为.
(2)证明:由条件可知, , 两点关于轴对称,设, ,则,由题可知, ,
∴, .
又直线的方程为,令得点的横坐标,
同理可得点的横坐标.
∴ ,即为定值.
【题目】某花圃为提高某品种花苗质量,开展技术创新活动,在,实验地分别用甲、乙方法培训该品种花苗.为观测其生长情况,分别在实验地随机抽取各50株,对每株进行综合评分,将每株所得的综合评分制成如图所示的频率分布直方图.记综合评分为80及以上的花苗为优质花苗.
(Ⅰ)求图中的值;
(Ⅱ)用样本估计总体,以频率作为概率,若在,两块试验地随机抽取3棵花苗,求所抽取的花苗中的优质花苗数的分布列和数学期望;
(Ⅲ)填写下面的列联表,并判断是否有90%的把握认为优质花苗与培育方法有关.
优质花苗 | 非优质花苗 | 合计 | |
甲培育法 | 20 | ||
乙培育法 | 10 | ||
合计 |
附:下面的临界值表仅供参考.
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | <>0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(参考公式:,其中.)
【题目】某公司在2019年新研发了一种设备,为测试其性能,从设备生产的流水线上随机抽取30件零件作为样本,测量其重量后,得到下表的相关数据.为了评判某台设备的性能,从该设备加工的零件中任意抽取一件,记其重量为,并根据以下不等式进行评判(表示相应事件的概率):①;②;评判规则为:若同时满足上述两个不等式,则设备等级为;仅满足其中一个,则等级为;若全部不满足,则等级为.
经计算,样本的平均值,标准差,以频率值作为概率的估计值.
重量/ | 18 | 19 | 21 | 22 | 23 | 24 | 26 | 28 | 29 | 30 |
件数/个 | 1 | 1 | 2 | 2 | 6 | 8 | 5 | 2 | 1 | 2 |
(1)试判断设备的性能等级;
(2)若或的零件认为是次品,其余为非次品.设30个样本中次品个数为,现需要从中取出全部次品和2件非次品形成个小样本,该公司从该小样本中机抽取2件零件,求取出的两件零件中恰有一件是次品的概率.