题目内容
【题目】对于由正整数构成的数列,若对任意,“且,也是中的项,则称为数列”.设数列|满足,..
(1)请给出一个的通项公式,使得既是等差数列也是“数列”,并说明理由;
(2)根据你给出的通项公式,设的前项和为,求满足的正整数的最小值.
【答案】(1)见解析(2)见解析
【解析】
(1)给出的通项公式为,利用等差数列的定义判断为等差数列,结合题意得出是“数列”;
(2)利用等差数列的求和公式得出,结合的单调性,即可得出满足的正整数的最小值.
(1)给出的通项公式为.
因为对任意,,
所以是公差为2的等差数列.
对任意,且,
,
所以是“数列”.
(2)因为是等差数列,所以.
因为单调递增,且,,
所以的最小值为8.
注:以下答案也正确,解答步骤参考上面内容:
①,,的最小值为7;
②,,的最小值为6.
【题目】目前,新冠病毒引发的肺炎疫情在全球肆虐,为了解新冠肺炎传播途径,采取有效防控措施,某医院组织专家统计了该地区500名患者新冠病毒潜伏期的相关信息,数据经过汇总整理得到如下图所示的频率分布直方图(用频率作为概率).潜伏期不高于平均数的患者,称为“短潜伏者”,潜伏期高于平均数的患者,称为“长潜伏者”.
短潜伏者 | 长潜伏者 | 合计 | |
60岁及以上 | 90 | ||
60岁以下 | 140 | ||
合计 | 300 |
(1)求这500名患者潜伏期的平均数(同一组中的数据用该组区间的中点值作代表),并计算出这500名患者中“长潜伏者”的人数;
(2)为研究潜伏期与患者年龄的关系,以潜伏期是否高于平均数为标准进行分层抽样,从上述500名患者中抽取300人,得到如下列联表,请将列联表补充完整,并根据列联表判断是否有97.5%的把握认为潜伏期长短与患者年龄有关:
(3)研究发现,有5种药物对新冠病毒有一定的抑制作用,其中有2种特别有效,现在要通过逐一试验直到把这2种特别有效的药物找出来为止,每一次试验花费的费用是500元,设所需要的试验费用为X,求X的分布列与数学期望.
附表及公式:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
【题目】某市创卫办为了了解该市开展创卫活动的成效,对市民进行了一次创卫满意程度测试,根据测试成绩评定“合格”、“不合格”两个等级,同时对相应等级进行量化:“合格”计5分,“不合格”计0分,现随机抽取部分市民的回答问卷,统计结果及对应的频率分布直方图如图所示:
等级 | 不合格 | 合格 | ||
得分 | ||||
频数 | 6 | 24 |
(1)求的值;
(2)按照分层抽样的方法,从评定等级为“合格”和“不合格”的问卷中随机抽取10份进行问题跟踪调研,现再从这10份问卷中任选4份,记所选4份问卷的量化总分为,求的分布列及数学期望;
(3)某评估机构以指标(,其中表示的方差)来评估该市创卫活动的成效.若,则认定创卫活动是有效的;否则认为创卫活动无效,应该调整创卫活动方案.在(2)的条件下,判断该市是否应该调整创卫活动方案?