题目内容
【题目】已知函数.
(1)若有两个不同的极值点,,求实数的取值范围;
(2)在(1)的条件下,求证:.
【答案】(1);(2)详见解析.
【解析】
(1)由得,根据有两个不同的极值点,,则有两个不同的零点,即方程有两个不同的实根,转化为直线与的图象有两个不同的交点求解.
(2)由(1)知,设,则,由得,,要证,将 代入整理为,再令,转化为,再构造函数,研究其最大值即可.
(1)由得,
有两个不同的极值点,,则有两个不同的零点,
即方程有两个不同的实根,
即直线与的图象有两个不同的交点,
设,则,
时,单调递增,且的取值范围是;
时,单调递减,且的取值范围是,
所以当时,直线与的图象有两个不同的交点,
有两个不同的极值点,,
故实数的取值范围是.
(2)由(1)知,设,则,
由得,
所以要证,只需证,
即证,即证,
设,即证,即证,
设,则,
所以在是增函数,,
所以,从而有.
练习册系列答案
相关题目
【题目】某工厂连续6天对新研发的产品按事先拟定的价格进行试销,得到一组数据如下表所示
日期 | 4月1日 | 4月2日 | 4月3日 | 4月4日 | 4月5日 | 4月6日 |
试销价元 | 9 | 11 | 10 | 12 | 13 | 14 |
产品销量件 | 40 | 32 | 29 | 35 | 44 |
(1)试根据4月2日、3日、4日的三组数据,求关于的线性回归方程,并预测4月6日的产品销售量;
(2)若选取两组数据确定回归方程,求选取得两组数据恰好是不相邻两天的事件的概率.
参考公式:
其中 ,