题目内容
【题目】已知数列满足.
(1)若数列的首项为,其中,且,,构成公比小于0的等比数列,求的值;
(2)若是公差为d(d>0)的等差数列的前n项和,求的值;
(3)若,,且数列单调递增,数列单调递减,求数列的通项公式.
【答案】(1)(2)(3)
【解析】
(1)根据,令,再根据,,构成公比小于0的等比数列,得到,联立求解.
(2)根据是公差为d(d>0)的等差数列的前n项和,则由通项与前n项和的关系,得到,,再根据对任意均成立,令联立求解.
(3)根据数列单调递增,数列单调递减,则有,,所以时,,时,,两者联立求解.
(1)由题意知:,
所以,
解得:;
(2)由题意知:,,
所以对任意均成立,其中d>0,
所以,解得,
所以.
此时,对任意均成立,故;
(3)由题意知:,,
故时,,
时,,
则:,
故,
即n为奇数时,,
又n为奇数时,,所以,
即n为偶数时,,
综上,.
【题目】空气质量指数AQI是反映空气质量状况的指数,AQI指数值越小,表明空气质量越好,其对应关系如下表:
AQI指数值 | 0~50 | 51~100 | 101~150 | 151~200 | 201~300 | >300 |
空气质量 | 优 | 良 | 轻度污染 | 中度污染 | 重度污染 | 严重污染 |
下图是某市10月1日—20日AQI指数变化趋势:
下列叙述错误的是
A. 这20天中AQI指数值的中位数略高于100
B. 这20天中的中度污染及以上的天数占
C. 该市10月的前半个月的空气质量越来越好
D. 总体来说,该市10月上旬的空气质量比中旬的空气质量好
【题目】某地自2014年至2019年每年年初统计所得的人口数量如表所示:
年份 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 |
人数(单位:千人) | 2082 | 2135 | 2203 | 2276 | 2339 | 2385 |
(1)根据表中的数据判断从2014年到2019年哪个跨年度的人口增长数量最大?并描述该地人口数量的变化趋势;
(2)研究人员用函数拟合该地的人口数量,其中的单位是年,2014年年初对应时刻,的单位是千人,经计算可得,请解释的实际意义.