题目内容

14.如图,已知SA⊥平面ABC,AB⊥BC,过点A作SB的垂线,垂足为E,过E作SC的垂线,垂足为F
(1)求证:AE⊥平面SBC;
(2)求证:SC⊥AF;
(3)判断直线BC是否平行于平面AEF,请说明理由.

分析 (1)由已知中过A作SB的垂线,垂足为E,由线面垂直的判定定理可得AE⊥面SBC,
(2)结合(1)的结论,进而AE⊥SC,再由已知中,过E作SC的垂线,垂足为F,由线面垂直的判定定理可得SC⊥面AEF,最后由线面垂直的性质得到AF⊥SC.
(3)设BC∥平面AEF,可得BC∥EF,由EF⊥SC,可证BC⊥SC,可证BC⊥平面SAC,AC?平面SAC,从而证明BC⊥AC,这与AB⊥BC矛盾,从而证明直线BC不平行于平面AEF.

解答 证明:(1)∵AE⊥BC,AE⊥SB,且SB∩BC=B,
∴AE⊥面SBC.
(2)由(1)得AE⊥面SBC,
∵SC?面SBC,
故AE⊥SC.
又∵AE⊥SC,EF⊥SC,且AE∩EF=E,
∴SC⊥面AEF,
∵AF?面AEF,
故AF⊥SC.
(3)直线BC不平行于平面AEF,
证明如下(反证法):设BC∥平面AEF,
∵平面SCB∩平面AEF=EF,
∴BC∥EF,
∵EF⊥SC,
∴BC⊥SC,
又∵BC⊥SA,SA∩SC=S,
∴BC⊥平面SAC,AC?平面SAC,
∴BC⊥AC,
∴△ABC中,与AB⊥BC矛盾.
故直线BC不平行于平面AEF.

点评 本题考查的知识点是直线与平面垂直的判定定理和性质定理,空间中直线与直线之间的位置关系,熟练掌握直线与直线垂直及直线与平面垂直之间的辩证关系及转化方法,是解答本题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网