题目内容
【题目】有6名男医生,4名女医生.
(1)选3名男医生,2名女医生,让这5名医生到5个不同地区去巡回医疗,共有多少种不同方法?
(2)把10名医生分成两组,每组5人且每组都要有女医生,则有多少种不同分法?若将这两组医生分派到两地去,并且每组选出正副组长两人,又有多少种不同方案?
【答案】(1); (2)
【解析】
试题分析:(1)本题中不仅要选出5名医生(元素),还要求分配到5个地区(空位),因此是一道“既选又排”的排列组合综合问题,解决这类问题的方法是“先选后排”,同时要注意特殊元素、特殊位置优先安排的原则。
(2)首先将分成以下两类情况第一类:一组中女医生1人,男医生4人,另一组中女医生3人,男医生2人;第二类:两组中人数都有女医生2人男医生3人;最后将这两组医生分派到两地去,并且每组选出正副组长两人,是排列问题.
(1)分三步完成.
第一步:从6名男医生中选3名有种方法;
第二步:从4名女医生中选2名有种方法;
第三步:对选出的5人分配到5个地区有A种方法.
根据分步乘法计数原理,共有(种).
(2)医生的选法有以下两类情况:
第一类:一组中女医生1人,男医生4人,另一组中女医生3人,男医生2人.共有种不同的分法;
第二类:两组中人数都有女医生2人男医生3人.因为组与组之间无顺序,故共有种不同的分法.
因此,把10名医生分成两组,每组5人且每组都要有女医生的不同的分法共有种.
若将这两组医生分派到两地去,并且每组选出正副组长两人,则共有
种不同方案
【题目】葫芦岛市某高中进行一项调查:2012年至2016年本校学生人均年求学花销(单位:万元)的数据如下表:
年份 | 2012 | 2013 | 2014 | 2015 | 2016 |
年份代号 | 1 | 2 | 3 | 4 | 5 |
年求学花销 | 3.2 | 3.5 | 3.8 | 4.6 | 4.9 |
(1)求关于的线性回归方程;
(2)利用(1)中的回归方程,分析2012年至2016年本校学生人均年求学花销的变化情况,并预测该地区2017年本校学生人均年求学花销情况.
附:回归直线的斜率和截距的最小二乘法估计公式分别为: