题目内容

【题目】设函数f(x)=|x-3|-|x+1|,x∈R.

(1)解不等式f(x)<-1;

(2)设函数g(x)=|x+a|-4,且g(x)≤f(x)在x∈[-2,2]上恒成立,求实数a的取值范围.

【答案】见解析

【解析】(1)函数f(x)=|x-3|-|x+1|

故由不等式f(x)<-1可得,x>3或

解得x>.

(2)函数g(x)≤f(x)在x∈[-2,2]上恒成立,

即|x+a|-4≤|x-3|-|x+1|在x∈[-2,2]上恒成立,

在同一个坐标系中画出函数f(x)和g(x)的图象,如图所示.

故当x∈[-2,2]时,若0≤-a≤4,则函数g(x)的图象在函数f(x)的图象的下方,g(x)≤f(x)在x∈[-2,2]上恒成立,

求得-4≤a≤0,故所求的实数a的取值范围为[-4,0].

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网