题目内容
【题目】已知△ABC中,A(2,-1),B(4,3),C(3,-2).
(1)求BC边上的高所在直线的一般式方程;
(2)求△ABC的面积.
【答案】(1)x+5y+3=0;(2)S△ABC=3
【解析】试题分析:求三角形一边的高所在的直线方程时,可利用点斜式求解,由于高线过三角形一个顶点,与对边垂直,借助垂直求出斜率,利用点斜式写出直线方程,已知三角形三个顶点的坐标求面积,最简单的方法是求出一边的长以及这边所在直线的方程,高线长利用点到直线的距离公式求出,从而求出面积.
试题解析:
(1)由斜率公式,得kBC=5,
所以BC边上的高所在直线方程为y+1=- (x-2),即x+5y+3=0.
(2)由两点间的距离公式,得|BC|= ,BC边所在的直线方程为y+2=5(x-3),即5x-y-17=0,
所以点A到直线BC的距离d=,
故S△ABC=.
练习册系列答案
相关题目