题目内容
【题目】设函数f(x)=x2﹣2ax﹣8a2(a>0),记不等式f(x)≤0的解集为A.
(1)当a=1时,求集合A;
(2)若(﹣1,1)A,求实数a的取值范围.
【答案】
(1)解:当a=1时,f(x)=x2﹣2x﹣8,
由不等式x2﹣2x﹣8≤0,化为(x﹣4)(x+2)≤0,
解得﹣2≤x≤4,
∴集合A={x|﹣2≤x≤4}.
(2)解:∵x2﹣2ax﹣8a2≤0,
∴(x﹣4a)(x+2a)≤0,
又∵a>0,∴﹣2a≤x≤4a,∴A=[﹣2a,4a].
又∵(﹣1,1)A,
∴ ,解得 ,
∴实数a的取值范围是 .
【解析】(1)当a=1时,f(x)=x2﹣2x﹣8,不等式x2﹣2x﹣8≤0,化为(x﹣4)(x+2)≤0,解出即可.(2)由x2﹣2ax﹣8a2≤0,可得(x﹣4a)(x+2a)≤0,由于a>0,可得﹣2a≤x≤4a,即A=[﹣2a,4a].由于(﹣1,1)A,可得 ,解得即可.
练习册系列答案
相关题目
【题目】汽车租赁公司为了调查A,B两种车型的出租情况,现随机抽取了这两种车型各100辆汽车,分别统计了每辆车某个星期内的出租天数,统计数据如下表: A型车
出租天数 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
车辆数 | 5 | 10 | 30 | 35 | 15 | 3 | 2 |
B型车
出租天数 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
车辆数 | 14 | 20 | 20 | 16 | 15 | 10 | 5 |
( I)从出租天数为3天的汽车(仅限A,B两种车型)中随机抽取一辆,估计这辆汽车恰好是A型车的概率;
(Ⅱ)根据这个星期的统计数据,估计该公司一辆A型车,一辆B型车一周内合计出租天数恰好为4天的概率;
(Ⅲ)如果两种车型每辆车每天出租获得的利润相同,该公司需要从A,B两种车型中购买一辆,请你根据所学的统计知识,给出建议应该购买哪一种车型,并说明你的理由.