题目内容

【题目】设函数f(x)=x2﹣2ax﹣8a2(a>0),记不等式f(x)≤0的解集为A.
(1)当a=1时,求集合A;
(2)若(﹣1,1)A,求实数a的取值范围.

【答案】
(1)解:当a=1时,f(x)=x2﹣2x﹣8,

由不等式x2﹣2x﹣8≤0,化为(x﹣4)(x+2)≤0,

解得﹣2≤x≤4,

∴集合A={x|﹣2≤x≤4}.


(2)解:∵x2﹣2ax﹣8a2≤0,

∴(x﹣4a)(x+2a)≤0,

又∵a>0,∴﹣2a≤x≤4a,∴A=[﹣2a,4a].

又∵(﹣1,1)A,

,解得

∴实数a的取值范围是


【解析】(1)当a=1时,f(x)=x2﹣2x﹣8,不等式x2﹣2x﹣8≤0,化为(x﹣4)(x+2)≤0,解出即可.(2)由x2﹣2ax﹣8a2≤0,可得(x﹣4a)(x+2a)≤0,由于a>0,可得﹣2a≤x≤4a,即A=[﹣2a,4a].由于(﹣1,1)A,可得 ,解得即可.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网