题目内容
【题目】如图,正方体的棱长为,作平面与底面不平行与棱,,,分别交于E,F,G,H,记EA,FB,GC,HD分别为,,,,若,,则多面体EFGHABCD的体积为
A. B. C. D.
【答案】C
【解析】
由正方体的对面平行及面面平行的性质定理得四边形EFGH是平行四边形,连结AC,BD交于点O,连结EG,FH,交于点,连结,则,由两个多面体EFGHABCD可以拼成一个长方体,即可求多面体EFGHABCD的体积.
由正方体的对面平行及面面平行的性质定理得:
,,
四边形EFGH是平行四边形,
连结AC,BD交于点O,连结EG,FH,交于点,
连结,则,
,,
,,,
两个多面体EFGHABCD可以拼成一个长方体,
多面体EFGHABCD的体积为:
.故选:C.
【题目】基于移动互联技术的共享单车被称为“新四大发明”之一,短时间就风靡全国,带给人们新的出行体验,某共享单车运营公司的市场研究人员为了解公司的经营状况,对该公司最近六个月内的市场占有率进行了统计,设月份代码为,市场占有率为,得结果如下表:
年月 | 2018.10 | 2018.11 | 2018.12 | 2019.1 | 2019.2 | 2019.3 |
1 | 2 | 3 | 4 | 5 | 6 | |
11 | 13 | 16 | 15 | 20 | 21 |
(1)观察数据看出,可用线性回归模型拟合与的关系,请用相关系数加以说明(精确到0.001);
(2)求关于的线性回归方程,并预测该公司2019年4月份的市场占有率;
(3)根据调研数据,公司决定再采购一批单车扩大市场,现有采购成本分别为1000元/辆和800元/辆的甲、乙两款车型报废年限各不相同,考虑到公司的经济效益,该公司决定先对两款单车各100辆进行科学模拟测试,得到两款单车使用寿命频率表如下:
经测算,平均每辆单车可以为公司带来收入500元,不考虑除采购成本之外的其他成本,假设每辆单车的使用寿命都是整数年,且用频率估计每辆单车使用寿命的概率,以每辆单车产生利润的期望值为决策依据,如果你是该公司的负责人,你会选择采购哪款车型?
参考数据:,,,
回归方程中斜率和截距的最小二乘法估计公式分别为,.
【题目】某企业为了解年广告费(单位:万元)对年销售额(单位:万元)的影响,对近4年的年广告费和年销售额的数据作了初步整理,得到下面的表格:
年广告费/万元 | 2 | 3 | 4 | 5 |
年销售额/万元 | 26 | 39 | 49 | 54 |
(1)用年广告费作解释变量,年销售额作预报变量,在所给坐标系中作出这些数据的散点图,并判断与哪一个更适合作为年销售额关于年广告费的回归方程类型(给出判断即可,不必说明理由).
(2)根据(1)的判断结果及表中数据,建立关于的回归方程.
(3)已知商品的年利润与,的关系为.根据(2)的结果,计算年广告费约为何值时(小数点后保留两位),年利润的预报值最大.附:对于一组数据,,…,,其回归直线的斜率和截距的最小二乘估计分别为,.