题目内容

【题目】2016622 日,“国际教育信息化大会在山东青岛开幕.为了解哪些人更关注“国际教育信息化大会某机构随机抽取了年龄在15-75岁之间的100人进行调查,经统计“青少年”与“中老年”的人数之比为9: 11.

1根据已知条件完成下面的列联表,并判断能否有的把握认为“中老年比“青少年”更加关注“国际教育信息化大会

2现从抽取的青少年中采用分层抽样的办法选取9人进行问卷调查.在这9人中再选取3人进行面对面询问,记选取的3人中关注“国际教育信息化大会”的人数为的分布列及数学期望.

:参考公式其中.

临界值表:

【答案】1)列联表见解析,有的把握认为“中老年”比青少年”更加关注“国际教育信息化大会”.

2)分布列见解析,

【解析】试题分析:(Ⅰ)根据统计数据,可得2×2列联表,根据列联表中的数据,计算K2的值,即可得到结论;

(Ⅱ)ξ的可能取值有0,1,2,3,求出相应的概率,可得ξ的分布列及数学期望

试题解析:

解:(1依题意可知,抽取的青少年共有人,“中老年”共有.

完成的列联表如下:

因为,所以有的把握认为“中老年”比青少年”更加关注“国际教育信息化大会”.

2根据题意知选出关注的人数为3不关注的人数为6在这9人中再选取3人进行面对面询问 的取值可以为0123,则

.

所以的分布列为

数学期望.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网