题目内容
5.在锐角△ABC中,A=2B,则$\frac{a}{b}$的取值范围是( )A. | $(0,\sqrt{2})$ | B. | $(\sqrt{2},\sqrt{3})$ | C. | $(\sqrt{3},2)$ | D. | $(\sqrt{2},2)$ |
分析 利用正弦定理列出关系式,将A=2B代入,利用二倍角的正弦函数公式化简,约分得到结果为2cosB,根据三角形的内角和定理及三角形ABC为锐角三角形,求出B的范围,进而确定出cosB的范围,即可得出所求式子的范围.
解答 解:∵A=2B,
∴根据正弦定理$\frac{a}{sinA}$=$\frac{b}{sinB}$得:$\frac{a}{b}$=$\frac{sinA}{sinB}$=$\frac{sin2B}{sinB}$=$\frac{2sinBcosB}{sinB}$=2cosB,
∵A+B+C=180°,
∴3B+C=180°,即C=180°-3B,
∵C为锐角,
∴30°<B<60°,
又0<A=2B<90°,
∴30°<B<45°,
∴$\frac{\sqrt{2}}{2}$<cosB<$\frac{\sqrt{3}}{2}$,即$\sqrt{2}$<2cosB<$\sqrt{3}$,
则$\frac{a}{b}$的取值范围是($\sqrt{2}$,$\sqrt{3}$).
故选:B.
点评 此题考查了正弦定理,余弦函数的图象与性质,以及特殊角的三角函数值,熟练掌握正弦定理是解本题的关键,属于中档题.
练习册系列答案
相关题目
16.已知全集I={-1,-2,-3,0,1},M={-1,0,a2+1},则∁IM为( )
A. | {-1,-2,-3,1} | B. | {-1,0,1} | C. | {-1,-3} | D. | {-2,-3} |
13.过点M(1,2),N(m,3)的直线与2x-3y+1=0垂直,则m的值为( )
A. | 1 | B. | $-\frac{1}{3}$ | C. | $\frac{1}{3}$ | D. | -1 |
15.在等差数列{an}中,已知a1+a2+a3=-24,a18+a19+a20=78,则S20等于( )
A. | 160 | B. | 180 | C. | 200 | D. | 220 |