题目内容
15.在等差数列{an}中,已知a1+a2+a3=-24,a18+a19+a20=78,则S20等于( )A. | 160 | B. | 180 | C. | 200 | D. | 220 |
分析 由条件a1+a2+a3=-24,a18+a19+a20=78可得到a1+a20=18,再由等差数列的前20项和的式子可得到答案.
解答 解:∵a1+a2+a3=-24,a18+a19+a20=78
∴a1+a20+a2+a19+a3+a18=54=3(a1+a20)
∴a1+a20=18
∴${S}_{20}=\frac{20({a}_{1}+{a}_{20})}{2}$=180
故选B
点评 本题主要考查等差数列的前n项和公式的应用.考查等差数列的性质.比较基础.
练习册系列答案
相关题目
5.在锐角△ABC中,A=2B,则$\frac{a}{b}$的取值范围是( )
A. | $(0,\sqrt{2})$ | B. | $(\sqrt{2},\sqrt{3})$ | C. | $(\sqrt{3},2)$ | D. | $(\sqrt{2},2)$ |
3.某地区2006年至2012年农村居民家庭人均纯收入y(单位:千元)的数据如下表:
(Ⅰ)求y关于t的线性回归方程;
(Ⅱ)利用(Ⅰ)中的回归方程,分析2006年至2012年该地区农村居民家庭人均纯收入的变化情况,并预测该地区2014年农村居民家庭人均纯收入.
附:回归直线的斜率和截距的最小二乘估计公式分别为:$\widehatb=\frac{{\sum_{i=1}^n{({t_i}-\overline t)({y_i}-\overline y)}}}{{\sum_{i=1}^n{{{({t_i}-\overline t)}^2}}}}$.$\widehata=\overline y-\widehatb\overline t$.
年份 | 2006 | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 |
年份代号t | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
人均纯收入y | 2.9 | 3.3 | 3.6 | 4.4 | 4.8 | 5.2 | 5.9 |
(Ⅱ)利用(Ⅰ)中的回归方程,分析2006年至2012年该地区农村居民家庭人均纯收入的变化情况,并预测该地区2014年农村居民家庭人均纯收入.
附:回归直线的斜率和截距的最小二乘估计公式分别为:$\widehatb=\frac{{\sum_{i=1}^n{({t_i}-\overline t)({y_i}-\overline y)}}}{{\sum_{i=1}^n{{{({t_i}-\overline t)}^2}}}}$.$\widehata=\overline y-\widehatb\overline t$.
20.设y=x-lnx,则此函数在区间(0,1)内为( )
A. | 单调递增 | B. | 单调递减 | C. | 有增有减 | D. | 不确定 |
7.下列事件中,是随机事件的是( )
①从10个玻璃杯(其中8个正品,2个次品)中任取3个,3个都是正品;
②同一门炮向同一个目标发射多发炮弹,其中50%的炮弹击中目标;
③某人给其朋友打电话,却忘记了朋友电话号码的最后一个数字,就随意在键盘上按了一个数字,恰巧是朋友的电话号码;
④异性电荷,相互吸引;
⑤某人购买体育彩票中一等奖.
①从10个玻璃杯(其中8个正品,2个次品)中任取3个,3个都是正品;
②同一门炮向同一个目标发射多发炮弹,其中50%的炮弹击中目标;
③某人给其朋友打电话,却忘记了朋友电话号码的最后一个数字,就随意在键盘上按了一个数字,恰巧是朋友的电话号码;
④异性电荷,相互吸引;
⑤某人购买体育彩票中一等奖.
A. | ②③④ | B. | ①③⑤ | C. | ①②③⑤ | D. | ②③⑤ |
4.命题“?x∈[0,+∞),x3+x≥0”的否定是( )
A. | ?x∈(-∞,0),x3+x<0 | B. | ?x0∈[0,+∞),x${\;}_{0}^{3}$+x0<0 | ||
C. | ?x∈(-∞,0),x3+x≥0 | D. | ?x0∈[0,+∞),x${\;}_{0}^{3}$+x0≥0 |