ÌâÄ¿ÄÚÈÝ
17£®ÒÑÖªÍÖÔ²$C£º\frac{x^2}{a^2}+\frac{y^2}{b^2}=1£¨a£¾b£¾0£©$µÄÓÒ¶¥µã¡¢É϶¥µã·Ö±ðΪA¡¢B£¬×ø±êԵ㵽ֱÏßABµÄ¾àÀëΪ$\frac{{4\sqrt{3}}}{3}$£¬ÇÒ$a=\sqrt{2}b$£®£¨1£©ÇóÍÖÔ²CµÄ·½³Ì£»
£¨2£©¹ýÍÖÔ²CµÄ×ó½¹µãF1µÄÖ±Ïßl½»ÍÖÔ²ÓÚM¡¢NÁ½µã£¬ÇÒ¸ÃÍÖÔ²ÉÏ´æÔÚµãP£¬Ê¹µÃËıßÐÎMONP£¨Í¼ÐÎÉϵÄ×Öĸ°´´Ë˳ÐòÅÅÁУ©Ç¡ºÃΪƽÐÐËıßÐΣ¬ÇóÖ±ÏßlµÄ·½³Ì£®
·ÖÎö £¨1£©Éè³öÖ±ÏßABµÄ·½³ÌΪbx+ay-ab=0£¬ÀûÓÃ×ø±êԵ㵽ֱÏßABµÄ¾àÀ룬ÒÔ¼°$a=\sqrt{2}b$£¬¿ÉµÃÍÖÔ²µÄ·½³Ì£®
£¨2£©Çó³öÍÖÔ²µÄ×󽹵㣬ÉèÖ±Ïß$l£ºx=my-2\sqrt{2}$£¬µãM£¨x1£¬y1£©¡¢N£¨x2£¬y2£©£¬ÁªÁ¢Ö±ÏßÓëÍÖÔ²·½³Ì£¬ÀûÓõãP£¨x1+x2£¬y1+y2£©ÔÚÍÖÔ²ÉÏ£¬Çó³öm£¬¿ÉµÃÖ±ÏßlµÄ·½³Ì£®
½â´ð ½â£º£¨1£©ÉèÖ±ÏßABµÄ·½³ÌΪbx+ay-ab=0£¬×ø±êԵ㵽ֱÏßABµÄ¾àÀëΪ$\frac{{4\sqrt{3}}}{3}=\frac{ab}{{\sqrt{{a^2}+{b^2}}}}⇒\frac{{{a^2}{b^2}}}{{{a^2}+{b^2}}}=\frac{16}{3}$£¬ÓÖ$a=\sqrt{2}b$£¬½âµÃ$a=4£¬b=2\sqrt{2}$£¬¹ÊÍÖÔ²µÄ·½³ÌΪ$\frac{x^2}{16}+\frac{y^2}{8}=1$
£¨2£©ÓÉ£¨1£©¿ÉÇóµÃÍÖÔ²µÄ×ó½¹µãΪ${F_1}£¨-2\sqrt{2}£¬0£©$£¬
Ò×ÖªÖ±ÏßlµÄбÂʲ»Îª0£¬¹Ê¿ÉÉèÖ±Ïß$l£ºx=my-2\sqrt{2}$£¬µãM£¨x1£¬y1£©¡¢N£¨x2£¬y2£©£¬
ÒòΪËıßÐÎMONPΪƽÐÐËıßÐΣ¬ËùÒÔ$\overrightarrow{OP}=\overrightarrow{OM}+\overrightarrow{ON}=£¨{x_1}+{x_2}£¬{y_1}+{y_2}£©⇒P£¨{x_1}+{x_2}£¬{y_1}+{y_2}£©$£¬
ÁªÁ¢$\left\{\begin{array}{l}x=my-2\sqrt{2}\\{x^2}+2{y^2}-16=0\end{array}\right.⇒£¨{m^2}+2£©{y^2}-4\sqrt{2}my-8=0$⇒$\left\{\begin{array}{l}¡÷=64£¨{m^2}+1£©£¾0\\{y_1}+{y_2}=\frac{{4\sqrt{2}m}}{{{m^2}+2}}\\{x_1}+{x_2}=m£¨{y_1}+{y_2}£©-4\sqrt{2}\end{array}\right.⇒\left\{\begin{array}{l}{x_1}+{x_2}=\frac{{-8\sqrt{2}}}{{{m^2}+2}}\\{y_1}+{y_2}=\frac{{4\sqrt{2}m}}{{{m^2}+2}}\end{array}\right.$£¬
ÒòΪµãP£¨x1+x2£¬y1+y2£©ÔÚÍÖÔ²ÉÏ£¬
ËùÒÔ${£¨{x_1}+{x_2}£©^2}+2{£¨{y_1}+{y_2}£©^2}=16⇒{£¨\frac{{-8\sqrt{2}}}{{{m^2}+2}}£©^2}+2{£¨\frac{{4\sqrt{2}}}{{{m^2}+2}}£©^2}=16⇒$$m=¡À\sqrt{2}$£¬
ÄÇôֱÏßlµÄ·½³ÌΪ$x=¡À\sqrt{2}y-2\sqrt{2}$£®
µãÆÀ ±¾Ì⿼²éÖ±ÏßÓëÍÖÔ²µÄλÖùØϵµÄ×ÛºÏÓ¦Ó㬿¼²é·ÖÎöÎÊÌâ½â¾öÎÊÌâµÄÄÜÁ¦£¬×ª»¯Ë¼ÏëµÄÓ¦Óã¬Éè¶ø²»ÇóÊǼò»¯½âÌâµÄ²ßÂÔ£®
A£® | 24 | B£® | 25 | C£® | 26 | D£® | 27 |
A£® | $\frac{2}{3}$ | B£® | $\frac{5}{6}$ | C£® | $\frac{2}{5}$ | D£® | $\frac{1}{3}$ |