题目内容
【题目】在三棱柱中,⊥底面,,,为线段上一点.
(Ⅰ)若,求与所成角的余弦值;
(Ⅱ)若,求与平面所成角的大小;
(Ⅲ)若二面角的大小为,求的值.
【答案】(Ⅰ);(Ⅱ)30°;(Ⅲ)1.
【解析】
(Ⅰ)以为原点,为轴,为轴,为轴,建立空间直角坐标系,利用向量法能求出与所成角的余弦值;
(Ⅱ)设,由,得,从而,求出平面的法向量,由此能求出与平面所成角的大小.
(Ⅲ)求出平面的法向量和平面的法向量,利用同量法能求出当二面角的大小为时,的值.
解:(Ⅰ)三棱柱中,⊥底面,
,,为线段上一点,
以为原点,为轴,为轴,为轴,建立空间直角坐标系,
设,则,
∵,∴,
∴,,
设与所成角为,
则与所成角的余弦值为:,
(Ⅱ)设,由,
得,
解得:,
∴,
设与平面所成角为,
∵平面的法向量为,
∴,
∴与平面所成角的大小为30°.
(Ⅲ)设,
则,
而,
设平面的法向量,
则,即,
取,得,
平面的法向量,
∵二面角的大小为,
∴,
解得:,
则,即为的中点,
,即,
∴当二面角的大小为时,.
【题目】有一个同学家开了一个小卖部,他为了研究气温对热饮饮料销售的影响,经过统计,得到一个卖出的热饮杯数与当天气温的散点图和对比表:
摄氏温度 | ||||||||
热饮杯数 |
(1)从散点图可以发现,各点散布在从左上角到右下角的区域里。因此,气温与当天热饮销售杯数之间成负相关,即气温越高,当天卖出去的热饮杯数越少。统计中常用相关系数来衡量两个变量之间线性关系的强弱.统计学认为,对于变量、,如果,那么负相关很强;如果,那么正相关很强;如果,那么相关性一般;如果,那么相关性较弱。请根据已知数据,判断气温与当天热饮销售杯数相关性的强弱.
(2)(i)请根据已知数据求出气温与当天热饮销售杯数的线性回归方程;
(ii)记为不超过的最大整数,如,.对于(i)中求出的线性回归方程,将视为气温与当天热饮销售杯数的函数关系.已知气温与当天热饮每杯的销售利润的关系是 (单位:元),请问当气温为多少时,当天的热饮销售利润总额最大?
(参考公式),,
(参考数据),, .
,,,.