题目内容
【题目】在△ABC中,D、E是BC边上两点,BD、BA、BC构成以2为公比的等比数列,BD=6,∠AEB=2∠BAD,AE=9,则三角形ADE的面积为( )
A.31.2
B.32.4
C.33.6
D.34.8
【答案】B
【解析】解:由题意可得:BD=6,AB=12,AE=9,设∠BAD=α,则∠AEB=2α, ∵在△ABE中,由正弦定理可得: ,可得:sinB= sin2α,
在△ABD中,由正弦定理可得: ,可得:AD= =9cosα,
∴由余弦定理可得:62=122+(9cosα)2﹣2×12×(9cosα)×cosα,
整理可得:cosα= ,
∴sinα= ,sin2α= ,cos2α= ,AD= ,
则在△ADE中,由余弦定理可得:( )2=DE2+92﹣2×9×DE× ,整理可得:5DE2﹣54DE+81=0,
∴解得:DE=9,或1.8(舍去),
∴S△ADE= AEDEsin2α= ×9×9× =32.4.
故选:B.
【考点精析】本题主要考查了正弦定理的定义的相关知识点,需要掌握正弦定理:才能正确解答此题.
练习册系列答案
相关题目