题目内容
(本小题满分10分)已知一动圆与圆外切,同时与圆内切,求动圆圆心的轨迹方程,并说明它是什么样的曲线。
M的轨迹是以为焦点,长轴长为12的椭圆。
试题分析:设动圆圆心为,半径为R,设已知圆的圆心分别为,将圆方程分别化为标准方程得:当圆M与圆相切时,有,同理,得,所以点M的轨迹是以为焦点,长轴长为12的椭圆。其方程为
点评:此题主要考查了应用定义法求点的轨迹方程。所谓定义法就是:动点的轨迹符合某种已知几何曲线的定义,可知轨迹方程的形式,再利用待定系数法求出方程的相关系数,这种方法叫做定义法。
练习册系列答案
相关题目