题目内容
【题目】在梯形中(图1),,,,过、分别作的垂线,垂足分别为、,且,将梯形沿、同侧折起,使得,且,得空间几何体 (图2).直线与平面所成角的正切值是.
(1)求证:平面;
(2)求多面体的体积.
【答案】(1)见证明;(2)
【解析】
(1)连接BE交AF于O,取AC的中点H,连接OH,可得OH∥CF,OH,再由已知DE∥CF,DE,可得四边形OEDH为平行四边形,则DH∥OE.由线面平行的判定可得EO∥面ACD,即BE∥面ACD;(2)证明平面,平面,利用求解即可
(1)连接交于点,取的中点,连接,,
因为四边形为矩形,则是的中位线,
所以且,
由已知得且,
所以且,
所以四边形为平行四边形,,
又因为平面,平面,
所以平面.
即平面;
(2)由已知,,,
可得平面,
又平面,所以平面平面,
又,所以平面,
设,,,
因为直线与平面所成角的正切值是,
所以,解得:,
,,
.
【题目】随着经济的发展,个人收入的提高,自2019年1月1日起,个人所得税起征点和税率的调整.调整如下:纳税人的工资、薪金所得,以每月全部收入额减除5000元后的余额为应纳税所得额.依照个人所得税税率表,调整前后的计算方法如下表:
个人所得税税率表(调整前) | 个人所得税税率表(调整后) | ||||
免征额3500元 | 免征额5000元 | ||||
级数 | 全月应纳税所得额 | 税率() | 级数 | 全月应纳税所得额 | 税率() |
1 | 不超过1500元部分 | 3 | 1 | 不超过3000元部分 | 3 |
2 | 超过1500元至4500元的部分 | 10 | 2 | 超过3000元至12000元的部分 | 10 |
3 | 超过4500元至9000元的部分 | 20 | 3 | 超过12000元至25000元的部分 | 20 |
… | … | … | … | … | … |
(1)假如小红某月的工资、薪金等所得税前收入总和不高于8000元,记表示总收入,表示应纳的税,试写出调整前后关于的函数表达式;
(2)某税务部门在小红所在公司利用分层抽样方法抽取某月100个不同层次员工的税前收入,并制成下面的频数分布表:
收入 (元) | ||||||
人数 | 30 | 40 | 10 | 8 | 7 | 5 |
先从收入在及的人群中按分层抽样抽取7人,再从中选2人作为新纳税法知识宣讲员,求两个宣讲员不全是同一收入人群的概率;
(3)小红该月的工资、薪金等税前收入为7500元时,请你帮小红算一下调整后小红的实际收入比调整前增加了多少?
【题目】据史载知,新华网:北京2008年11月9日电,国务院总理温家宝主持召开国务院常务会议.研究部署进一步扩大内需促进经济平稳较快增长的措施,以应对日趋严峻的全球性世界经济金融危机,在提高城乡居民特别是低收入人群的收入水平政策措施的刺激下,某零售店当时近5个月的销售额和利润额数据统计如下表:
月份 | 2 | 3 | 4 | 5 | 6 |
销售额x/千万元 | 3 | 5 | 6 | 7 | 9 |
利润额y/百万元 | 2 | 3 | 3 | 4 | 5 |
(1)若x与y之间是线性相关关系,求利润额y关于销售额x的线性回归方程;
(2)若9月份的销售额为8千万元,试利用(1)的结论估计该零售店9月份的利润额.
参考公式:,.