题目内容
【题目】解关于的不等式
【答案】当时,不等式的解集是或;
当时,不等式的解集为;
当时,不等式的解集为;
当时,不等式的解集为.
当时,不等式的解集为.
【解析】
先将不等式化为,当时,分,,三种情况讨论,求出解集;当,化简原不等式,直接求出结果;当时,化简不等式,解对应一元二次不等式,即可求出结果.
不等式可化为.
①当时,原不等式可以化为,
根据不等式的性质,这个不等式等价于.
因为方程的两个根分别是2,,
所以当时,,
则原不等式的解集是;
当时,原不等式的解集是;
当时,,则原不等式的解集是.
②当时,原不等式为,解得,
即原不等式的解集是.
③当时,原不等式可以化为,根据不等式的性质,
这个不等式等价于,由于,
故原不等式的解集是或.
综上所述,当时,不等式的解集是或;
当时,不等式的解集为;
当时,不等式的解集为;
当时,不等式的解集为.
当时,不等式的解集为.
练习册系列答案
相关题目