题目内容
【题目】已知直线l:4x+3y+10=0,半径为2的圆C与l相切,圆心C在x轴上且在直线l的右上方.
(1)求圆C的方程;
(2)过点M(1,0)的直线与圆C交于A,B两点(A在x轴上方),问在x轴正半轴上是否存在定点N,使得x轴平分∠ANB?若存在,请求出点N的坐标;若不存在,请说明理由.
【答案】(1);(2)存在,且.
【解析】试题分析:(1)设出圆心坐标,根据直线与圆相切,得到圆心到直线的距离,确定出圆心坐标,即可得出圆方程;(2)当直线轴,则轴平分,当直线斜率存在时,设直线方程为,联立圆与直线方程,消去得到关于的一元二次方程,利用韦达定理表示出两根之和与两根之积,由若轴平分,则,求出的值,确定出此时坐标即可.
试题解析:(1)设圆心C(a,0) ,则或a=-5(舍),所以圆C:x2+y2=4.
(2)当直线AB⊥x轴时,x轴平分∠ANB,当直线AB的斜率存在时,设直线AB的方程为y=k(x-1),N(t,0),A(x1,y1),B(x2,y2),由得(k2+1)x2-2k2x+k2-4=0,所以, ,若x轴平分∠ANB,则 2x1x2-(t+1)(x1+x2)+2t=0,所以当点N为(4,0)时,能使得∠ANM=∠BNM总成立.
练习册系列答案
相关题目