题目内容
【题目】下列四个命题:
函数的最大值为1;
“,”的否定是“”;
若为锐角三角形,则有;
“”是“函数在区间内单调递增”的充分必要条件.
其中错误的个数是( )
A.1B.2C.3D.4
【答案】A
【解析】
由正弦的二倍角公式和正弦函数的值域判断;写出全称命题的否定判断;由锐角三角形的定义和正弦函数的单调性,结合诱导公式可判断;由二次函数的图象和性质,结合充分必要条件的定义可判断.
解:由,得的最大值为,故错误;
“,”的否定是“”,故正确;
为锐角三角形,,则,
在上是增函数,,同理可得,,,故正确;
,函数的零点是,0,结合二次函数的对称轴,
可得函数在区间内单调递增;
若函数在区间内单调递增,结合二次函数的对称轴,可得,
,
“”是“函数在区间内单调递增”的充分必要条件,故正确.
其中错误的个数是1.
故选:A.
【题目】至2018年底,我国发明专利申请量已经连续8年位居世界首位,下表是我国2012年至2018年发明专利申请量以及相关数据.
总计 | ||||||||
年代代码 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 28 |
申请量(万件) | 65 | 82 | 92 | 110 | 133 | 138 | 154 | 774 |
65 | 164 | 276 | 440 | 665 | 828 | 1078 | 3516 |
>
注:年代代码1~7分别表示2012~2018.
(1)可以看出申请量每年都在增加,请问这几年中那一年的增长率达到最高,最高是多少?
(2)建立关于的回归直线方程(精确到0.01),并预测我国发明专利申请量突破200万件的年份.
参考公式:.
【题目】近来天气变化无常,陡然升温、降温幅度大于的天气现象出现增多.陡然降温幅度大于容易引起幼儿伤风感冒疾病.为了解伤风感冒疾病是否与性别有关,在某妇幼保健院随机对人院的名幼儿进行调查,得到了如下的列联表,若在全部名幼儿中随机抽取人,抽到患伤风感冒疾病的幼儿的概率为,
(1)请将下面的列联表补充完整;
患伤风感冒疾病 | 不患伤风感冒疾病 | 合计 | |
男 | 25 | ||
女 | 20 | ||
合计 | 100 |
(2)能否在犯错误的概率不超过的情况下认为患伤风感冒疾病与性别有关?说明你的理由;
(3)已知在患伤风感冒疾病的名女性幼儿中,有名又患黄痘病.现在从患伤风感冒疾病的名女性中,选出名进行其他方面的排查,记选出患黄痘病的女性人数为,求的分布列以及数学期望.下面的临界值表供参考:
参考公式:,其中
【题目】某茶楼有四类茶饮,假设为顾客准备泡茶工具所需的时间互相独立,且都是整数分钟,经统计以往为100位顾客准备泡茶工具所需的时间,结果如下:
类别 | 铁观音 | 龙井 | 金骏眉 | 大红袍 |
顾客数(人) | 20 | 30 | 40 | 10 |
时间(分钟/人) | 2 | 3 | 4 | 6 |
注:服务员在准备泡茶工具时的间隔时间忽略不计,并将频率视为概率.
(1)求服务员恰好在第6分种开始准备第三位顾客的泡茶工具的概率;
(2)用表示至第4分钟末已准备好了工具的顾客人数,求的分布列及数学期望.