题目内容
【题目】在平面直角坐标系中,已知曲线的参数方程为,以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为.
(1)求曲线与曲线两交点所在直线的极坐标方程;
(2)若直线的极坐标方程为,直线与轴的交点为,与曲线相交于两点,求的值.
【答案】(1);(2)
【解析】
(1)先将和化为普通方程,可知是两个圆,由圆心的距离判断出两者相交,进而得相交直线的普通方程,再化成极坐标方程即可;(2)先求出l的普通方程有,点,写出直线l的参数方程,代入曲线:,设交点两点的参数为,,根据韦达定理可得和,进而求得的值。
(1) 曲线的普通方程为:
曲线的普通方程为:,即
由两圆心的距离,所以两圆相交,
所以两方程相减可得交线为,即.
所以直线的极坐标方程为.
(2) 直线的直角坐标方程:,则与轴的交点为
直线的参数方程为,带入曲线得.
设两点的参数为,
所以,,所以,同号.
所以
【题目】2019年2月13日《烟台市全民阅读促进条例》全文发布,旨在保障全民阅读权利,培养全民阅读习惯,提高全民阅读能力,推动文明城市和文化强市建设.某高校为了解条例发布以来全校学生的阅读情况,随机调查了200名学生每周阅读时间(单位:小时)并绘制如图所示的频率分布直方图.
(1)求这200名学生每周阅读时间的样本平均数和中位数(的值精确到0.01);
(2)为查找影响学生阅读时间的因素,学校团委决定从每周阅读时间为,的学生中抽取9名参加座谈会.
(i)你认为9个名额应该怎么分配?并说明理由;
(ii)座谈中发现9名学生中理工类专业的较多.请根据200名学生的调研数据,填写下面的列联表,并判断是否有的把握认为学生阅读时间不足(每周阅读时间不足8.5小时)与“是否理工类专业”有关?
阅读时间不足8.5小时 | 阅读时间超过8.5小时 | |
理工类专业 | 40 | 60 |
非理工类专业 |
附:().
临界值表:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
<> | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
【题目】改革开放以来,我国农村7亿多贫困人口摆脱贫困,贫困发生率由1978年的下降到2018年底的,创造了人类减贫史上的中国奇迹,为全球减贫事业贡献了中国智慧和中国方案.“贫困发生率”是指低于贫困线的人口占全体人口的比例.2012年至2018年我国贫困发生率的数据如表:
年份() | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 |
贫困发生率 | 10.2 | 8.5 | 7.2 | 5.7 | 4.5 | 3.1 | 1.4 |
(1)从表中所给的7个贫困发生率数据中任选两个,求两个都低于的概率;
(2)设年份代码,利用回归方程,分析2012年至2018年贫困发生率的变化情况,并预测2019年的贫困发生率.
附:回归直线的斜率和截距的最小二乘估计公式为:,.
【题目】随着节能减排意识深入人心以及共享单车在饶城的大范围推广,越来越多的市民在出行时喜欢选择骑行共享单车。为了研究广大市民在共享单车上的使用情况,某公司在我市随机抽取了100名用户进行调查,得到如下数据:
每周使用次数 | 1次 | 2次 | 3次 | 4次 | 5次 | 6次及以上 |
男 | 4 | 3 | 3 | 7 | 8 | 30 |
女 | 6 | 5 | 4 | 4 | 6 | 20 |
合计 | 10 | 8 | 7 | 11 | 14 | 50 |
(1)如果认为每周使用超过3次的用户为“喜欢骑行共享单车”,请完成列表(见答题卡),并判断能否在犯错误概率不超过0.05的前提下,认为是否“喜欢骑行共享单车”与性别有关?
(2)每周骑行共享单车6次及6次以上的用户称为“骑行达人”,视频率为概率,在我市所有“骑行达人”中,随机抽取4名用户.
① 求抽取的4名用户中,既有男生“骑行达人”又有女“骑行达人”的概率;
②为了鼓励女性用户使用共享单车,对抽出的女“骑行达人”每人奖励500元,记奖励总金额为,求的分布列及数学期望.
附表及公式:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |