题目内容
17.在△ABC中,角A,B,C 的对边分别是a,b,c,若sinA:sinB:sinC=2:3:4,则a:b:c=2:3:4.分析 由正弦定理变形可得a=2RsinA,b=2RsinB,c=2RsinC,代入要求的式子结合已知可得.
解答 解:由正弦定理可得$\frac{a}{sinA}$=$\frac{b}{sinB}$=$\frac{c}{sinC}$=2R,(其中R为△ABC外接圆半径),
∴a=2RsinA,b=2RsinB,c=2RsinC,
∴a:b:c=2RsinA:2RsinB:2RsinC=sinA:sinB:sinC=2:3:4
故答案为:2:3:4
点评 本题考查正弦定理的变形应用,属基础题.
练习册系列答案
相关题目
5.若0<x<1,则函数f(x)=x(1-x)的最大值为( )
A. | 1 | B. | $\frac{1}{4}$ | C. | $\frac{1}{2}$ | D. | 2 |
12.有人发现了一个有趣的现象,中国人的邮箱名称里含有数字的比较多,而外国人邮箱名称里含有数字的比较少,为了研究国籍和邮箱名称里是否含有数字的关系,他收集了124个邮箱名称.其中中国人的有70个,外国人的有54个,中国人的邮箱中有43个含数字,外国人的邮箱中有21个含数字.
(Ⅰ)根据以上数据建立一个2×2列联表:
(Ⅱ)他发现在这组数据中,外国人邮箱名称里含数字的也不少,他不能断定国籍和邮箱名称里是否含有数字有无关系,你能帮他判断一下吗?
下面临界值表仅供参考:
(参考公式:${K}^{2}=\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d)
(Ⅰ)根据以上数据建立一个2×2列联表:
有数字 | 无数字 | 合计 | |
中国人 | |||
外国人 | |||
合计 |
下面临界值表仅供参考:
P(K2=k) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
9.命题P:直线垂直于平面,则垂直于平面内的任意一条直线Q:直线平行于平面,则平行于平面内的任意一条直线,则( )
A. | P真Q假 | B. | P假Q真 | C. | 都真 | D. | 都假 |