题目内容
【题目】已知f(x)=2sin(x-)-,现将f(x)的图象向左平移个单位长度,再向上平移个单位长度,得到函数g(x)的图象.
(1)求f()+g()的值;
(2)若a,b,c分别是△ABC三个内角A,B,C的对边,a+c=4,且当x=B时,g(x)取得最大值,求b的取值范围.
【答案】见解析
【解析】解 (1)因为g(x)=2sin[(x+)-]-+=2sin(x+),
所以f()+g()=2sin(-)-+2sin=1.
(2)因为g(x)=2sin(x+),
所以当x+=+2kπ(k∈Z),
即x∈+2kπ(k∈Z)时,g(x)取得最大值.
因为x=B时g(x)取得最大值,
又B∈(0,π),所以B=.
而b2=a2+c2-2accos=a2+c2-ac=(a+c)2-3ac=16-3ac≥16-3·()2=16-12=4,
所以b≥2.又b<a+c=4,
所以b的取值范围是[2,4).
【题目】某企业通过调查问卷(满分50分)的形式对本企业900名员工的工作满意度进行调查,并随机抽取了其中30名员工(其中16名女员工,14名男员工)的得分,如下表:
女 | 47 36 32 48 34 44 43 47 46 41 43 42 50 43 35 49 |
男 | 37 35 34 43 46 36 38 40 39 32 48 33 40 34 |
(Ⅰ)现求得这30名员工的平均得分为40.5分,若规定大于平均得分为“满意”,否则为“不满意”,请完成下列表格:
“满意”的人数 | “不满意”的人数 | 合计 | |
女 | 16 | ||
男 | 14 | ||
合计 | 30 |
(Ⅱ)根据上述表中数据,利用独立性检验的方法判断,能否在犯错误的概率不超过1%的前提下,认为该企业员工“性别”与“工作是否满意”有关?
参考数据:
0.10 | 0.050 | 0.025 | 0.010 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
参考公式:
【题目】调查在级风的海上航行中71名乘客的晕船情况,在男人中有12人晕船,25人不晕船,在女人中有10人晕船,24人不晕船
(1)作出性别与晕船关系的列联表;
(2)根据此资料,能否在犯错误的概率不超过0.1的前提下认为级风的海上航行中晕船与性别有关?
晕船 | 不晕船 | 总计 | |
男人 | |||
女人 | |||
总计 |
附:.
0.25 | 0.15 | 0.10 | 0.05 | 0.025 | |
| 1.323 | 2.072 | 2.706 | 3.841 | 5.024 |