题目内容
4.已知向量$\overrightarrow{a}$=(-2,m),$\overrightarrow{b}$=(1-m,1),若$\overrightarrow{a}$⊥$\overrightarrow{b}$,则m=$\frac{2}{3}$;若(3$\overrightarrow{a}$-2$\overrightarrow{b}$)∥(2$\overrightarrow{a}$+$\overrightarrow{b}$),则m=2或-1.分析 利用平面向量垂直和平行的性质得到坐标的等式解之即可.
解答 解:因为向量$\overrightarrow{a}$=(-2,m),$\overrightarrow{b}$=(1-m,1),若$\overrightarrow{a}$⊥$\overrightarrow{b}$,则$\overrightarrow{a}•\overrightarrow{b}$=-2(1-m)+m=0,解得m=$\frac{2}{3}$;
3$\overrightarrow{a}$-2$\overrightarrow{b}$=(-8+2m,3m-2),2$\overrightarrow{a}$+$\overrightarrow{b}$=(-3-m,2m+1),因为(3$\overrightarrow{a}$-2$\overrightarrow{b}$)∥(2$\overrightarrow{a}$+$\overrightarrow{b}$),
所以(-8+2m)(2m+1)=(3m-2)(-3-m),整理得m2-m-2=0,解得m=2或m=-1.
故答案为:$\frac{2}{3}$;2或-1.
点评 本题考查了平面向量的垂直和平行的性质;熟练运用向量垂直或者平行的坐标关系得到方程是关键.
练习册系列答案
相关题目
14.在如图所示的平面图形中,$\overrightarrow{{e}_{1}}$、$\overrightarrow{{e}_{2}}$为互相垂直的单位向量,则向量$\overrightarrow{a}$+$\overrightarrow{b}$-$\overrightarrow{c}$可表示为( )
A. | $\overrightarrow{{e}_{1}}$-2$\overrightarrow{{e}_{2}}$ | B. | -$\overrightarrow{{e}_{1}}$+2$\overrightarrow{{e}_{2}}$ | C. | -$\overrightarrow{{e}_{1}}$-2$\overrightarrow{{e}_{2}}$ | D. | 3$\overrightarrow{{e}_{1}}$+2$\overrightarrow{{e}_{2}}$ |
15.已知不等式|x+a|+|x-3|≤|x-4|的解集包含[2,3],则a的取值范围为( )
A. | [-3,-2] | B. | [-2,0] | C. | [-3,0] | D. | [-2,1] |
19.已知正项等比数列{an}满足:a7=a6+2a5,若存在两项am、an,使得aman=16a12,则$\frac{1}{m}$+$\frac{9}{n}$的最小值为( )
A. | $\frac{3}{2}$ | B. | $\frac{8}{3}$ | C. | $\frac{11}{4}$ | D. | 不存在 |
9.数列-1,$\frac{8}{5}$,-$\frac{15}{7}$,$\frac{24}{9}$,…的一个通项公式an是( )
A. | (-1)n$\frac{{n}^{2}}{2n+1}$ | B. | (-1)n$\frac{n(n+2)}{n+1}$ | C. | (-1)n$\frac{n(n+2)}{2n+1}$ | D. | (-1)n$\frac{(n+1)^{2}-1}{2(n+1)}$ |
13.函数f(x)(x∈R)满足f(1)=1,f′(1)=1,f′(x)<$\frac{1}{2}$,f(x2)<$\frac{1}{2}$x2+$\frac{1}{2}$.
A. | (-∞.-1) | B. | (1,+∞) | C. | (-∞,-1)∪(1,+∞) | D. | (-1,1) |