题目内容
如图,在四棱锥
中,底面
是菱形,
,
,
,
平面
,
是
的中点,
是
的中点.
(Ⅰ) 求证:
∥平面
;
(Ⅱ)求证:平面
⊥平面
;
(Ⅲ)求平面
与平面
所成的锐二面角的大小.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232009593213736.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823200958978577.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823200959025516.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823200959056680.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823200959072481.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823200959087404.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823200959118385.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823200959025516.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823200959150249.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823200959165358.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823200959181229.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823200959212382.png)
(Ⅰ) 求证:
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823200959228336.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823200959243370.png)
(Ⅱ)求证:平面
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823200959243370.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823200959274431.png)
(Ⅲ)求平面
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823200959274431.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823200959290414.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232009593213736.png)
(Ⅰ) 取
中点为
,连
∵
是
的中点 ∴
是
的中位线,∴ ![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823200959493481.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823200959524427.jpg)
∵
是
中点且
是菱形,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823200959649396.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823200959524427.jpg)
,∴ ![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823200959493481.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823200959524427.jpg)
. ∴ ![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823200959493481.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823200959524427.jpg)
∴ 四边形
是平行四边形. 从而
, ∵ ![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823200959930399.png)
平面
,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823200959976472.png)
平面
, ∴
∥平面
……………………………4分
(Ⅱ)∵
⊥平面
,![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823201000242396.png)
平面
∴
∵ 底面
是菱形,
∴
为正三角形, ∵
是
中点 ∴
∵
是平面
内的两条相交直线 ∴
⊥平面
.
∵![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823201000242396.png)
平面
∴ 平面
⊥平面
. ……………………………8分
说明:(Ⅰ) 、(Ⅱ)前两小题用向量法,解答只要言之有理均应按步给分.
(Ⅲ)以
为原点,垂直于
的方向为
轴,
的方向分别为
轴、
轴建立空间直角坐标系,易知
、
、
、
.
由(Ⅱ)知
⊥平面
,∴
是平面
的一个法向量,
设平面
的一个法向量为![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823201001490652.png)
由
,且由![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823201001599789.png)
在以上二式中令
,则得
,
,
∴
,设平面
与平面
所成锐角为
∴
.
故平面
与平面
所成的锐角为![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823201001817410.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232010018333837.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823200959337365.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823200959352399.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823200959368595.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823200959399318.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823200959415383.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823200959493481.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823200959508524.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823200959493481.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823200959524427.jpg)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823200959555536.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823200959633302.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823200959649396.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823200959664534.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823200959649396.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823200959524427.jpg)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823200959742405.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823200959493481.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823200959524427.jpg)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823200959789535.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823200959493481.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823200959524427.jpg)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823200959836384.png)
∴ 四边形
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823200959883602.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823200959914669.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823200959930399.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823200959945276.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823200959961442.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823200959976472.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823201000086214.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823200959961442.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823200959930399.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823200959961442.png)
(Ⅱ)∵
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823201000210367.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823200959664534.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823201000242396.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823201000086214.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823200959664534.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823201000460555.png)
∵ 底面
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823200959664534.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823201000507684.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823201000694522.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823200959633302.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823200959649396.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823201000756568.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823201000772506.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823201000803441.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823201000242396.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823201000803441.png)
∵
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823201000242396.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823201000086214.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823200959961442.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823200959961442.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823201000803441.png)
说明:(Ⅰ) 、(Ⅱ)前两小题用向量法,解答只要言之有理均应按步给分.
(Ⅲ)以
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823201001022300.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823201001037510.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823201001053266.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823201001037510.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823201001084310.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823201001100231.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823201001271528.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823201001287643.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823201001334586.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823201001365784.png)
由(Ⅱ)知
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823201000242396.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823201000803441.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823201001443885.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823201000803441.png)
设平面
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823201001490450.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823201001490652.png)
由
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823201001521867.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823201001599789.png)
在以上二式中令
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823201001614470.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823201001630333.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823201001646484.png)
∴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823201001661760.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823201000803441.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823201001490450.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823201001724297.png)
∴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232010017391477.png)
故平面
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823201000803441.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823201001490450.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823201001817410.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232010018333837.png)
略
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目