题目内容
如图,在正方体ABCD-A1B1C1D1中,棱长为a,M,N分别为A1B和AC上的点,A1M=AN=
,则MN与平面BB1C1C的位置关系是 ( ).
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240348599374766.jpg)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824034859906521.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240348599374766.jpg)
A.相交 | B.平行 | C.垂直 | D.不能确定 |
B
分别以C1B1,C1D1,C1C所在直线为x,y,z轴,建立空间直角坐标系,如图所示.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240348599534643.jpg)
∵A1M=AN=
a,∴M
,N
,∴
=
.
又C1(0,0,0),D1(0,a,0),∴
=(0,a,0),
∴
·
=0,∴
⊥
.
∵
是平面BB1C1C的法向量,
且MN?平面BB1C1C,∴MN∥平面BB1C1C.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240348599534643.jpg)
∵A1M=AN=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824034859968447.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824034859984805.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824034900000819.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824034900015525.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824034900031861.png)
又C1(0,0,0),D1(0,a,0),∴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824034900046474.png)
∴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824034900015525.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824034900046474.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824034900015525.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824034900046474.png)
∵
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824034900046474.png)
且MN?平面BB1C1C,∴MN∥平面BB1C1C.
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目