题目内容
【题目】在多面体中,底面是梯形,四边形是正方形,,,面面,..
(1)求证:平面平面;
(2)设为线段上一点,,试问在线段上是否存在一点,使得平面,若存在,试指出点的位置;若不存在,说明理由?
(3)在(2)的条件下,求点到平面的距离.
【答案】(1)见解析.(2)见解析.(3).
【解析】
分析:(1)在梯形中,过点作作于,可得,所以,由面面,可得出,利用线面垂直的判定定理得平面,进而可得平面平面;(2)在线段上取点,使得,连接,先证明与相似,于是得,由线面平行的判定定理可得结果;(3)点到平面的距离就是点到平面的距离,设到平面的距离为,利用体积相等可得,,解得.
详解:(1)因为面面,面面,,所以面,.
故四边形是正方形,所以.
在中,,∴.,
∴,∴∴.
因为,平面,平面.
∴平面,
平面,∴平面平面.
(2)在线段上存在点,使得平面
在线段上取点,使得,连接.
在中,因为,所以与相似,所以
又平面,平面,所以平面.
(3)点到平面的距离就是点到平面的距离,设到平面的距离为,利用同角相等可得,,可得.
【题目】现对某市工薪阶层关于“楼市限购令”的态度进行调查,随机抽调了50人,他们月收入的频数分布及对“楼市限购令”赞成人数如下表.
月收入(单位百元) | ||||||
频数 | 5 | 10 | 15 | 10 | 5 | 5 |
赞成人数 | 4 | 8 | 12 | 5 | 2 | 1 |
(1)由以上统计数据填下面2×2列联表,并问是否有99%的把握认为“月收入以5500元为分界点对“楼市限购令”的态度有差异;
月收入不低于55百元的人数 | 月收入低于55百元的人数 | 合计 | |
赞成 | a=______________ | c=______________ | ______________ |
不赞成 | b=______________ | d=______________ | ______________ |
合计 | ______________ | ______________ | ______________ |
(2)试求从年收入位于(单位:百元)的区间段的被调查者中随机抽取2人,恰有1位是赞成者的概率。
参考公式:,其中.
参考值表:
0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
【题目】在直角坐标系中,曲线C的参数方程为(为参数),以坐标原点为极点,轴非负半轴为极轴建立极坐标系.
(1)写出曲线C的极坐标方程;
(2)设点M的极坐标为,过点M的直线与曲线C交于A、B两点,若,求.
【题目】国家放开二胎政策后,不少家庭开始生育二胎,随机调查110名性别不同且为独生子女的高中生,其中同意生二胎的高中生占随机调查人数的,统计情况如下表:
同意 | 不同意 | 合计 | |
男生 | 20 | ||
女生 | 20 | ||
合计 | 110 |
(l)求,的值
(2)根据以上数据,能否有99%的把握认为同意生二胎与性别有关?请说明理由.
附:
0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |