题目内容
点P是圆
上的一个动点,过点P作PD垂直于
轴,垂足为D,Q为线段PD的中点。
(1)求点Q的轨迹方程。
(2)已知点M(1,1)为上述所求方程的图形内一点,过点M作弦AB,若点M恰为弦AB的中点,求直线AB的方程。
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000501450636.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000501465266.png)
(1)求点Q的轨迹方程。
(2)已知点M(1,1)为上述所求方程的图形内一点,过点M作弦AB,若点M恰为弦AB的中点,求直线AB的方程。
(1)
;(2)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000501481719.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240005014961560.png)
试题分析:(Ⅰ)设Q(x,y),P(x0,y0),则D(x0,0),由Q为线段PD的中点,知x0=x,y0=2y,由P(x0,y0)在圆x2+y2=16上,知x02+y02=16,由此能求出点Q的轨迹方程.
(Ⅱ)设直线AB的方程为y-1=k(x-1).由y=k(x-1)+1,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000501512677.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000501528776.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000501543544.png)
(1)设Q(
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000501559432.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000501574465.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000501590423.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000501606712.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000501621629.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240005016841066.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000501699702.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000501715790.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000501481719.png)
(2)法1:依题意显然
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000501762363.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000501777658.png)
由
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240005017931267.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000501824896.png)
得
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240005018401295.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240005018551700.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240005018711200.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240005019021249.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240005019181626.png)
法2:(直接求k):设A(x1,y1),B(x2,y2)。
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240005019332131.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240005019641277.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240005019641631.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240005019961712.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240005020111422.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240005020271613.png)
点评:解决该试题的关键是体现了解析几何中设而不求的解题思想,联立方程组,,转化为二次方程的根的问题,结合韦达定理得到。
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目