题目内容
【题目】随着共享单车的成功运营,更多的共享产品逐步走入大家的世界,共享汽车、共享篮球、共享充电宝等各种共享产品层出不穷.某公司随即抽取人对共享产品是否对日常生活有益进行了问卷调查,并对参与调查的人中的性别以及意见进行了分类,得到的数据如下表所示:
男 | 女 | 总计 | |
认为共享产品对生活有益 | |||
认为共享产品对生活无益 | |||
总计 |
(1)根据表中的数据,能否在犯错误的概率不超过的前提下,认为对共享产品的态度与性别有关系?
(2)现按照分层抽样从认为共享产品增多对生活无益的人员中随机抽取人,再从人中随机抽取人赠送超市购物券作为答谢,求恰有人是女性的概率.
参与公式:
临界值表:
【答案】(1) 可以在犯错误的概率不超过的前提下,认为对共享产品的态度与性别有关系(2)
【解析】试题分析:(1)根据题中数据,利用参考公式计算的观测值,对应查表下结论即可;
(2)从认为共享产品增多对生活无益的女性中抽取4人,记为,从认为共享产品增多对生活无益的男性中抽取2人,记为,写出所有的基本事件,即可得到恰有1人是女性的概率.
试题解析:
(1)依题意,在本次的实验中, 的观测值,
故可以在犯错误的概率不超过0.1%的前提下,认为对共享产品的态度与性别有关系;
(2)依题意,应该从认为共享产品增多对生活无益的女性中抽取4人,记为,从认为共享产品增多对生活无益的男性中抽取2人,记为,
从以上6人中随机抽取2人,所有的情况为: , 共15种,其中满足条件的为共8种情况,故所求概率.
【题目】随着共享单车的成功运营,更多的共享产品逐步走入大家的世界,共享汽车、共享篮球、共享充电宝等各种共享产品层出不穷.某公司随机抽取1000人对共享产品是否对日常生活有益进行了问卷调查,并对参与调查的1000人中的性别以及意见进行了分类,得到的数据如下表所示:
男 | 女 | 总计 | |
认为共享产品对生活有益 | 400 | 300 | 700 |
认为共享产品对生活无益 | 100 | 200 | 300 |
总计 | 500 | 500 | 1000 |
(1)根据表中的数据,能否在犯错误的概率不超过0.1%的前提下,认为共享产品的态度与性别有关系?
(2)为了答谢参与问卷调查的人员,该公司对参与本次问卷调查的人员随机发放1张超市的购物券,购物券金额以及发放的概率如下:
购物券金额 | 20元 | 50元 |
概率 |
现有甲、乙两人领取了购物券,记两人领取的购物券的总金额为,求的分布列和数学期望.
参考公式: .
0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |