题目内容
【题目】为了调查某地区老年人是否需要志愿者提供帮助,用简单随机抽样方法从该地区调查了500位老年人,结果如下:
男 | 女 | 总计 | |
需要帮助 | 40 | m | 70 |
不需要帮助 | n | 270 | s |
总计 | 200 | t | 500 |
(1)求m,n,s,t的值;
(2)估计该地区老年人中,需要志愿者提供帮助的比例;
(3)能否有99%的把握认为该地区的老年人是否需要志愿者帮助与性别有关.
参考公式:
随机变量K2= ,n=a+b+c+d
在2×2列联表:
y1 | y2 | 总计 | |
x1 | a | b | a+b |
x2 | c | d | c+d |
总计 | a+c | b+d | a+b+c+d |
P(K2≥k0) | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k0 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
【答案】
(1)解:根据列联表得,m=70﹣40=30,
n=200﹣40=160,
s=160+270=430,
t=30+270=300
(2)解:根据列联表,估计该地区老年人中,需要志愿者提供帮助的比例为 =14%
(3)解:根据列联表,计算观测值K2= ≈9.967>6.635,
对照临界值表知,有99%的把握认为该地区的老年人是否需要志愿者帮助与性别有关
【解析】(1)根据列联表,求出m、n、s与t的值;(2)根据列联表,计算需要志愿者提供帮助的比例是多少即可;(3)根据列联表,计算观测值,对照临界值表即可得出结论.
【题目】某险种的基本保费为(单位:元),继续购买该险种的投保人称为续保人,
续保人本年度的保费与其上年度出险次数的关联如下:
上年度出险次数 | 0 | 1 | 2 | 3 | 4 | |
保费 |
随机调查了该险种的400名续保人在一年内的出险情况,得到如下统计表:
出险次数 | 0 | 1 | 2 | 3 | 4 | |
频数 | 120 | 100 | 60 | 60 | 40 | 20 |
(Ⅰ)记A为事件:“一续保人本年度的保费不高于基本保费”.求的估计值;
(Ⅱ)记B为事件:“一续保人本年度的保费高于基本保费但不高于基本保费的190%”.
求的估计值;
(III)求续保人本年度的平均保费估计值.