题目内容
【题目】某品牌茶壶的原售价为80元/个,今有甲、乙两家茶具店销售这种茶壶,甲店用如下方法促销:如果只购买一个茶壶,其价格为78元/个;如果一次购买两个茶壶,其价格为76元/个;…,一次购买的茶壶数每增加一个,那么茶壶的价格减少2元/个,但茶壶的售价不得低于44元/个;乙店一律按原价的75%销售.现某茶社要购买这种茶壶x个,如果全部在甲店购买,则所需金额为y1元;如果全部在乙店购买,则所需金额为y2元.
(1)分别求出y1、y2与x之间的函数关系式;
(2)该茶社去哪家茶具店购买茶壶花费较少?
【答案】
(1)解: ,y2=60x(x∈N+)
(2)解:2x2+80x=60x解得x=10
当0<x<10时,去乙店花费较少
当x=10时,甲乙两店一样
当x>10时,去甲店花费较少
【解析】(1)根据甲店茶壶的售价不得低于44元/个可知甲店购买所需金额为一个分段函数,若全部在乙店购买,则所需金额为一个一次函数;(2)先求出茶具店购买茶壶花费y一样时所买茶壶个数,然后分段可知该茶社去哪家茶具店购买茶壶花费较少.
练习册系列答案
相关题目
【题目】本市某玩具生产公司根据市场调查分析,决定调整产品生产方案,准备每天生产, , 三种玩具共100个,且种玩具至少生产20个,每天生产时间不超过10小时,已知生产这些玩具每个所需工时(分钟)和所获利润如表:
玩具名称 | |||
工时(分钟) | 5 | 7 | 4 |
利润(元) | 5 | 6 | 3 |
(Ⅰ)用每天生产种玩具个数与种玩具表示每天的利润(元);
(Ⅱ)怎样分配生产任务才能使每天的利润最大,最大利润是多少?