题目内容
【题目】某险种的基本保费为(单位:元),继续购买该险种的投保人称为续保人,
续保人本年度的保费与其上年度出险次数的关联如下:
上年度出险次数 | 0 | 1 | 2 | 3 | 4 | |
保费 |
随机调查了该险种的400名续保人在一年内的出险情况,得到如下统计表:
出险次数 | 0 | 1 | 2 | 3 | 4 | |
频数 | 120 | 100 | 60 | 60 | 40 | 20 |
(Ⅰ)记A为事件:“一续保人本年度的保费不高于基本保费”.求的估计值;
(Ⅱ)记B为事件:“一续保人本年度的保费高于基本保费但不高于基本保费的190%”.
求的估计值;
(III)求续保人本年度的平均保费估计值.
【答案】(Ⅰ)0.55;(Ⅱ)0.4;(Ⅲ) 1.1925a.
【解析】试题分析:
(1)由频率估计概率值可得的估计值是0.55;
(2) 事件B发生当且仅当一年内出险次数大于1且小于5,据此可求得的估计值是0.4;
(3) 列出保费和相应频率对应的列表,然后利用均值的计算公式可得续保人本年度的平均保费估计值是1.1925a.
试题解析:
(Ⅰ)事件A发生当且仅当一年内出险次数小于2.由所给数据知,一年内险次数小于2的频率为,故P(A)的估计值为0.55.
(Ⅱ)事件B发生当且仅当一年内出险次数大于1且小于5.由是给数据知,一年内出险次数大于1且小于5的频率为,故P(B)的估计值为0.4
(Ⅲ)由题可知:
保费 | 0.85a | a | 1.25a | 1.5a | 1.75a | 2a |
频率 | 0.30 | 0.25 | 0.15 | 0.15 | 0.10 | 0.05 |
调查200名续保人的平均保费为
,
因此,续保人本年度平均保费估计值为1.1925a.
【题目】为了调查某地区老年人是否需要志愿者提供帮助,用简单随机抽样方法从该地区调查了500位老年人,结果如下:
男 | 女 | 总计 | |
需要帮助 | 40 | m | 70 |
不需要帮助 | n | 270 | s |
总计 | 200 | t | 500 |
(1)求m,n,s,t的值;
(2)估计该地区老年人中,需要志愿者提供帮助的比例;
(3)能否有99%的把握认为该地区的老年人是否需要志愿者帮助与性别有关.
参考公式:
随机变量K2= ,n=a+b+c+d
在2×2列联表:
y1 | y2 | 总计 | |
x1 | a | b | a+b |
x2 | c | d | c+d |
总计 | a+c | b+d | a+b+c+d |
P(K2≥k0) | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k0 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |