题目内容

【题目】已知二次函数f(x)=x2﹣16x+q+3:
(1)若函数在区间[﹣1,1]上存在零点,求实数q的取值范围;
(2)问:是否存在常数t(t≥0),当x∈[t,10]时,f(x)的值域为区间D,且D的长度为12﹣t.

【答案】
(1)解:∵二次函数f(x)=x2﹣16x+q+3的对称轴是x=8

∴函数f(x)在区间[﹣1,1]上单调递减

∴要使函数f(x)在区间[﹣1,1]上存在零点,须满足f(﹣1)f(1)≤0.

即(1+16+q+3)(1﹣16+q+3)≤0

解得﹣20≤q≤12.

所以使函数f(x)在区间[﹣1,1]上存在零点的实数q的取值范围是[﹣20,12]


(2)解:当 时,即0≤t≤6时,f(x)的值域为:[f(8),f(t)],

即[q﹣61,t2﹣16t+q+3].

∴t2﹣16t+q+3﹣(q﹣61)=t2﹣16t+64=12﹣t.

∴t2﹣15t+52=0,∴

经检验 不合题意,舍去.

时,即6≤t<8时,f(x)的值域为:[f(8),f(10)],

即[q﹣61,q﹣57].

∴q﹣57﹣(q﹣61)=4=12﹣t.

∴t=8

经检验t=8不合题意,舍去.

当t≥8时,f(x)的值域为:[f(t),f(10)],

即[t2﹣16t+q+3,q﹣57]

∴q﹣57﹣(t2﹣16t+q+3)=﹣t2+16t﹣60=12﹣t

∴t2﹣17t+72=0,∴t=8或t=9.

经检验t=8或t=9满足题意,

所以存在常数t(t≥0),当x∈[t,10]时,f(x)的值域为区间D,且D的长度为12﹣t


【解析】(1)求出二次函数的对称轴,得到函数f(x)在[﹣1,1]上为单调函数,要使函数在区间[﹣1,1]上存在零点,则f(﹣1)f(1)≤0,由此可解q的取值范围;(2)分t<8,最大值是f(t);t<8,最大值是f(10);8≤t<10三种情况进行讨论,对于每一种情况,由区间长度是12﹣t求出t的值,验证范围后即可得到答案.
【考点精析】通过灵活运用二次函数的性质和函数的零点,掌握当时,抛物线开口向上,函数在上递减,在上递增;当时,抛物线开口向下,函数在上递增,在上递减;函数的零点就是方程的实数根,亦即函数的图象与轴交点的横坐标.即:方程有实数根,函数的图象与坐标轴有交点,函数有零点即可以解答此题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网