题目内容
【题目】已知函数f(x)=
(1)求函数f(x)的零点;
(2)若实数t满足f(log2t)+f(log2 )<2f(2),求f(t)的取值范围.
【答案】
(1)解:当x<0时,解 得:x=ln =﹣ln3,
当x≥0时,解 得:x=ln3,
故函数f(x)的零点为±ln3
(2)解:当x>0时,﹣x<0,
此时f(﹣x)﹣f(x)= = =0,
故函数f(x)为偶函数,
又∵x≥0时,f(x)= 为增函数,
∴f(log2t)+f(log2 )<2f(2)时,2f(log2t)<2f(2),
即|log2t|<2,
﹣2<log2t<2,
∴t∈( ,4)
故f(t)∈( , )
【解析】(1)分类讨论,函数对应方程根的个数,综合讨论结果,可得答案.(2)分析函数的奇偶性和单调性,进而可将不等式化为|log2t|<2,解得f(t)的取值范围.
练习册系列答案
相关题目
【题目】为了调查某地区老年人是否需要志愿者提供帮助,用简单随机抽样方法从该地区调查了500位老年人,结果如下:
男 | 女 | 总计 | |
需要帮助 | 40 | m | 70 |
不需要帮助 | n | 270 | s |
总计 | 200 | t | 500 |
(1)求m,n,s,t的值;
(2)估计该地区老年人中,需要志愿者提供帮助的比例;
(3)能否有99%的把握认为该地区的老年人是否需要志愿者帮助与性别有关.
参考公式:
随机变量K2= ,n=a+b+c+d
在2×2列联表:
y1 | y2 | 总计 | |
x1 | a | b | a+b |
x2 | c | d | c+d |
总计 | a+c | b+d | a+b+c+d |
P(K2≥k0) | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k0 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |