题目内容

【题目】已知等比数列{an}满足a1=2,a2=4(a3﹣a4),数列{bn}满足bn=3﹣2log2an
(1)求数列{an},{bn}的通项公式;
(2)令cn= ,求数列{cn}的前n项和Sn
(3)若λ>0,求对所有的正整数n都有2λ2﹣kλ+2>a2nbn成立的k的取值范围.

【答案】
(1)解:设等比数列{an}的公比为q,∵a1=2,a2=4(a3﹣a4),

∴a2=4a2(q﹣q2),化为:4q2﹣4q+1=0,解得q=

∴an= =22n

∴bn=3﹣2log2an=3﹣2(2﹣n)=2n﹣1


(2)解:cn= = =

∴数列{cn}的前n项和Sn= [2+322+5×23+…+(2n﹣1)2n],

∴2Sn= [22+323+…+(2n﹣3)2n+(2n﹣1)2n+1],

∴﹣Sn= =

可得:Sn=


(3)解:不等式2λ2﹣kλ+2>a2nbn,即2λ2﹣kλ+2>222n(2n﹣1),

令dn=222n(2n﹣1),则dn+1﹣dn= = = <0,

因此dn+1<dn,即数列{dn}单调递减,因此n=1时dn取得最大值d1=1.

∵对所有的正整数n都有2λ2﹣kλ+2>a2nbn成立,

∴2λ2﹣kλ+2>1,∵λ>0.

∴k<2 ,∵2 ≥2 =2 ,当且仅当λ= 时取等号.

即k的取值范围是


【解析】(1)设等比数列{an}的公比为q,根据a1=2,a2=4(a3﹣a4),可得a2=4a2(q﹣q2),化简解得q.可得an . 利用对数的运算性质可得bn . (2)cn= = = .利用错位相减法与等比数列的求和公式即可得出.(3)不等式2λ2﹣kλ+2>a2nbn , 即2λ2﹣kλ+2>222n(2n﹣1),令dn=222n(2n﹣1),通过作差可得:dn+1<dn , 即数列{dn}单调递减,因此n=1时dn取得最大值d1=1.根据对所有的正整数n都有2λ2﹣kλ+2>a2nbn成立,可得2λ2﹣kλ+2>1,根据λ>0.可得k<2 ,再利用基本不等式的性质即可得出.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网