题目内容

三棱锥P-ABC中,AP=AC,PB=2,将此三棱锥沿三条侧棱剪开,其展开图是一个直角梯形p1p2p3A,如图.
(1)求证:PB⊥AC
(2)求PB与面ABC所成角的大小.
(3)(只理科做)求三棱锥P-ABC外接球的面积.
(1)证明:由展开图知:P1B⊥P1A,P2B⊥P2C
∴BP⊥PC,BP⊥PA,∴BP⊥平面PAC
∵AC?平面PAC,∴PB⊥AC
(2)设PA=AC=AP3=x,P3C=y
作AE⊥CP3,则E为CP3的中点
∴x2-(
y
2
)
2
=16,且x=y+
y
2
,解得 x=3
2
,y=2
2

即PA=AC=3
2
,PC=2
2

作PO⊥平面ABC,连接BO交AC于D,连接PD
∴∠PBO为PB与面ABC所成角
∵BP⊥平面PAC,易证AC⊥BD,AC⊥PD
在△PAC中,
1
2
×2
2
×4=
1
2
×3
2
×PD
∴PD=
8
3

∴tan∠PBO=
PD
PB
=
4
3

∴∠PBO=arctan
4
3

(3)设△PAC的外接圆圆心为Q,球心为O.连接PQ并延长交球面于M,连BM,OQ
∵BP⊥平面PAC,OQ⊥平面PAC,∴BPOQ
∴平面BPM是球的一个大圆
在△BPM中,BP=2,PM=
9
2

∴BM=
22+(
9
2
)
2
=
97
2
,∴球半径R=
97
4

∴球的表面积S=4πR2=
97π
4
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网