题目内容

如图所示,已知在正四棱柱ABCD-A1B1C1D1中,底面边长AB=2,侧棱BB1的长为4,E为C1C上的点,且CE=1,
(1)求证:A1C⊥平面BDE;
(2)求A1B与平面BDE所成的角的正弦值.
(1)证明:以D为原点,DA、DC、DD1所在直线分别为x、y、z轴建立空间直角坐标系D-xyz
则D(0,0,0),A(2,0,0),B(2,2,0),C(0,2,0),A1(2,0,4),B1(2,2,4),C1(0,2,4),D1(0,0,4),E(0,2,1),
BE
=(-2,0,1).
A1C
=(-2,2,-4),
DB
=(2,2,0),
A1C
BE
=4+0-4=0且
A1C
DB
=-4+4+0=0,
A1C
DB
A1C
BE

∵DB∩BE=B
∴A1C⊥平面BDE;
(2)由(1)知
A1C
=(-2,2,-4)是平面BDE的一个法向量,
A1B
=(0,2,-4),
∴cos<
A1C
A1B
>=
A1C
A1B
|
A1C
||
A1B
|
=
30
6

∴A1B与平面BDE所成角的正弦值为
30
6
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网