ÌâÄ¿ÄÚÈÝ
20£®ÍÖÔ²C£º$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1£¨a£¾b£¾0£©$µÄ×óÓÒ½¹µã·Ö±ðÊÇF1£¬F2£¬ÀëÐÄÂÊΪ$\frac{{\sqrt{3}}}{2}$£¬¹ýF2ÇÒ´¹Ö±ÓÚxÖáµÄÖ±Ïß±»ÍÖÔ²C½ØµÃµÄÏ߶γ¤Îª1£®£¨1£©ÇóÍÖÔ²CµÄ·½³Ì£»
£¨2£©µãPÊÇÍÖÔ²CÉϳý³¤Öá¶ËµãÍâµÄÈÎÒ»µã£¬Á¬½ÓPF1£¬PF2£¬Éè¡ÏF1PF2µÄ½Çƽ·ÖÏßPM½»CµÄ³¤ÖáÓÚµãM£¨m£¬0£©£¬ÇómµÄÈ¡Öµ·¶Î§£»
£¨3£©ÔÚ£¨2£©µÄÌõ¼þÏ£¬¹ýµãP×÷бÂÊΪkµÄÖ±Ïßl£¬Ê¹µÃlÓëÍÖÔ²CÓÐÇÒÖ»ÓÐÒ»¸ö¹«¹²µã£¬ÉèÖ±ÏßPF1£¬PF2µÄбÂÊ·Ö±ðΪk1£¬k2£¬Èôk¡Ù0£¬ÊÔÖ¤Ã÷$\frac{1}{k{k}_{1}}$+$\frac{1}{k{k}_{2}}$Ϊ¶¨Öµ£¬²¢Çó³öÕâ¸ö¶¨Öµ£®
·ÖÎö £¨1£©°Ñx=c´úÈëÍÖÔ²·½³ÌµÃ$\frac{{c}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¬½âµÃy=¡À$\frac{{b}^{2}}{a}$£¬ÓÉÒÑÖª¹ýF2ÇÒ´¹Ö±ÓÚxÖáµÄÖ±Ïß±»ÍÖÔ²C½ØµÃµÄÏ߶γ¤Îª1£¬¿ÉµÃ$\frac{2{b}^{2}}{a}$=1£®ÔÙÀûÓÃe=$\frac{c}{a}$£¬¼°a2=b2+c2¼´¿ÉµÃ³öÍÖÔ²·½³Ì£»
£¨2£©Éè|PF1|=t£¬|PF2|=n£¬ÓɽÇƽ·ÖÏßµÄÐÔÖʿɵÃ$\frac{t}{n}$=$\frac{|M{F}_{1}|}{|{F}_{2}M|}$=$\frac{\sqrt{3}+m}{\sqrt{3}-m}$£¬ÀûÓÃÍÖÔ²µÄ¶¨Òå¿ÉµÃt+n=2a=4£¬ÏûÈ¥tµÃn£¬ÔÙ¸ù¾Ýa-c£¼n£¼a+c£¬¼´¿ÉµÃµ½mµÄÈ¡Öµ·¶Î§£»
£¨3£©ÉèP£¨x0£¬y0£©£¬²»·ÁÉèy0£¾0£¬ÓÉÍÖÔ²·½³Ì£¬È¡y=$\sqrt{1-\frac{{x}^{2}}{4}}$£¬ÀûÓõ¼Êý¼´¿ÉµÃµ½ÇÐÏßµÄбÂÊ£¬ÔÙÀûÓÃбÂʼÆË㹫ʽ¼´¿ÉµÃµ½k1£¬k2£¬´úÈë¼´¿ÉÖ¤Ã÷½áÂÛ£®
½â´ð ½â£º£¨1£©°Ñx=c´úÈëÍÖÔ²·½³ÌµÃµÃ$\frac{{c}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¬½âµÃy=¡À$\frac{{b}^{2}}{a}$£¬
¡ß¹ýF2ÇÒ´¹Ö±ÓÚxÖáµÄÖ±Ïß±»ÍÖÔ²C½ØµÃµÄÏ߶γ¤Îª1£¬
¡à$\frac{2{b}^{2}}{a}$=1£®
ÓÖe=$\frac{c}{a}$£¬ÁªÁ¢µÃ$\left\{\begin{array}{l}{\frac{2{b}^{2}}{a}=1}\\{{a}^{2}={b}^{2}+{c}^{2}}\\{\frac{c}{a}=\frac{\sqrt{3}}{2}}\end{array}\right.$£¬
½âµÃ$\left\{\begin{array}{l}{a=2}\\{b=1}\\{c=\sqrt{3}}\end{array}\right.$£¬
¡àÍÖÔ²CµÄ·½³ÌΪ$\frac{{x}^{2}}{4}$+y2=1£®
£¨2£©ÈçͼËùʾ£¬Éè|PF1|=t£¬|PF2|=n£¬
ÓɽÇƽ·ÖÏßµÄÐÔÖʿɵÃ$\frac{t}{n}$=$\frac{|M{F}_{1}|}{|{F}_{2}M|}$=$\frac{\sqrt{3}+m}{\sqrt{3}-m}$£¬
ÓÖt+n=2a=4£¬ÏûÈ¥tµÃµ½$\frac{4-n}{n}$=$\frac{\sqrt{3}+m}{\sqrt{3}-m}$£¬
»¯Îªn=$\frac{2£¨\sqrt{3}-m£©}{\sqrt{3}}$£¬
¡ßa-c£¼n£¼a+c£¬¼´2-$\sqrt{3}$£¼$\frac{2£¨\sqrt{3}-m£©}{\sqrt{3}}$£¼2+$\sqrt{3}$£¬
½âµÃ-$\frac{3}{2}$£¼m£¼$\frac{3}{2}$£®
¡àmµÄÈ¡Öµ·¶Î§Îª£¨-$\frac{3}{2}$£¬$\frac{3}{2}$£©£®
£¨3£©Ö¤Ã÷£ºÉèP£¨x0£¬y0£©£¬
²»·ÁÉèy0£¾0£¬ÓÉÍÖÔ²·½³Ì$\frac{{x}^{2}}{4}$+y2=1£®
È¡y=$\sqrt{1-\frac{{x}^{2}}{4}}$£¬Ôòy¡ä=-$\frac{\frac{2x}{4}}{2\sqrt{1-\frac{{x}^{2}}{4}}}$=-$\frac{x}{4\sqrt{1-\frac{{x}^{2}}{4}}}$£¬
¡àk=kl=-$\frac{{x}_{0}}{4\sqrt{1-\frac{{{x}_{0}}^{2}}{4}}}$=-$\frac{{x}_{0}}{4{y}_{0}}$£®
¡ßk1=$\frac{{y}_{0}}{{x}_{0}+\sqrt{3}}$£¬k2=$\frac{{y}_{0}}{{x}_{0}-\sqrt{3}}$£¬
¡à$\frac{1}{k_1}+\frac{1}{k_2}$=$\frac{2{x}_{0}}{{y}_{0}}$£¬
¡à$\frac{1}{k{k}_{1}}$+$\frac{1}{k{k}_{2}}$=-$\frac{4{y}_{0}}{{x}_{0}}$•$\frac{2{x}_{0}}{{y}_{0}}$=-8Ϊ¶¨Öµ£®
µãÆÀ ±¾Ìâ×ۺϿ¼²éÁËÍÖÔ²µÄ¶¨Òå¡¢±ê×¼·½³Ì¼°ÆäÐÔÖÊ¡¢½Çƽ·ÖÏßµÄÐÔÖÊ¡¢ÀûÓõ¼ÊýµÄ¼¸ºÎÒâÒåÑо¿ÇÐÏß¡¢Ð±ÂʼÆË㹫ʽµÈ»ù´¡ÖªÊ¶£¬¿¼²éÁËÍÆÀíÄÜÁ¦¡¢·ÖÀàÌÖÂÛµÄ˼Ïë·½·¨¡¢¼ÆËãÄÜÁ¦¡¢·ÖÎöÎÊÌâºÍ½â¾öÎÊÌâµÄÄÜÁ¦£®