题目内容
【题目】某学校共有6个学生餐厅,甲、乙、丙、丁四位同学每人随机地选择一家餐厅就餐(选择到每个餐厅概率相同),则下列结论正确的是( )
A.四人去了四个不同餐厅就餐的概率为
B.四人去了同一餐厅就餐的概率为
C.四人中恰有2人去了第一餐厅就餐的概率为
D.四人中去第一餐厅就餐的人数的期望为
【答案】ACD
【解析】
根据互斥事件的概率,分别求出选项对应事件的概率,逐项验证;对于选项,根据每个学生随机选择一家餐厅,则选择去第一餐厅的概率为,所以去第一餐厅就餐的人数服从二项分布,即可求出期望,判断选项正确.
四位同学随机选择一家餐厅就餐有选择方法,
选项,四人去了四个不同餐厅就餐的概率为,
所以选项正确;
选项,四人去了同一餐厅就餐的概率为,
所以选项不正确;
选项,四人中恰有2人去了第一餐厅就餐的概率为
,所以选项正确;
选项,每个同学选择去第一餐厅的概率为,
所以去第一餐厅就餐的人数服从二项分布,
,所以选项正确.
故选:ACD.
【题目】自2017年起,部分省、市陆续实施了新高考,某省采用了“”的选科模式,即:考试除必考的语、数、外三科外,再从物理、化学、生物、历史、地理、政治六个学科中,任意选取三科参加高考,为了调查新高考中考生的选科情况,某地区调查小组进行了一次调查,研究考生选择化学与选择物理是否有关.已知在调查数据中,选物理的考生与不选物理的考生人数相同,其中选物理且选化学的人数占选物理人数的,在不选物理的考生中,选化学与不选化学的人数比为.
(1)若在此次调查中,选物理未选化学的考生有100人,试完成下面的列联表:
选化学 | 不选化学 | 合计(人数) | |
选物理 | |||
不选物理 | |||
合计(人数) |
(2)根据第(1)问的数据,能否有99%把握认为选择化学与选择物理有关?
(3)若研究得到在犯错误概率不超过0.01的前提下,认为选化学与选物理有关,则选物理又选化学的人数至少有多少?(单位:千人;精确到0.001)
附:.
0.050 | 0.010 | 0.001 | |
3.841 | 6.635 | 10.828 |
【题目】某校高一年级有甲,乙,丙三位学生,他们前三次月考的物理成绩如表:
第一次月考物理成绩 | 第二次月考物理成绩 | 第三次月考物理成绩 | |
学生甲 | 80 | 85 | 90 |
学生乙 | 81 | 83 | 85 |
学生丙 | 90 | 86 | 82 |
则下列结论正确的是( )
A. 甲,乙,丙第三次月考物理成绩的平均数为86
B. 在这三次月考物理成绩中,甲的成绩平均分最高
C. 在这三次月考物理成绩中,乙的成绩最稳定
D. 在这三次月考物理成绩中,丙的成绩方差最大