题目内容
【题目】为迎接“五一”节的到来,某单位举行“庆五一,展风采”的活动.现有6人参加其中的一个节目,该节目由两个环节可供参加者选择,为增加趣味性,该单位用电脑制作了一个选择方案:按下电脑键盘“Enter”键则会出现模拟抛两枚质地均匀骰子的画面,若干秒后在屏幕上出现两个点数和,并在屏幕的下方计算出的值.现规定:每个人去按“Enter”键,当显示出来的小于时则参加环节,否则参加环节.
(1)求这6人中恰有2人参加该节目环节的概率;
(2)用分别表示这6个人中去参加该节目两个环节的人数,记,求随机变量的分布列与数学期望.
【答案】(1)(2)见解析
【解析】
(1)利用古典概型概率公式得出选择参加环节的概率,选择参加环节的概率,再利用独立重复实验概率公式,即可得出答案;
(2)得出的可能取值以及对应概率,即可得出分布列以及期望.
(1)依题意得,由屏幕出现的点数和形成的有序数对,一共有种等可能的基本事件
符合的有,共24种
所以选择参加环节的概率为,选择参加环节的概率为
所以这6人中恰有2人参加该节目环节的概率
(2)依题意得的可能取值为
所以的分布列为
0 | 2 | 4 | 6 | |
数学期望
练习册系列答案
相关题目
【题目】随着我国经济的发展,居民收入逐年增长.某地区2014年至2018年农村居民家庭人均纯收入(单位:千元)的数据如下表:
年份 | 2014 | 2015 | 2016 | 2017 | 2018 |
年份代号 | 1 | 2 | 3 | 4 | 5 |
人均纯收入 | 5 | 6 | 7 | 8 | 10 |
(1)求关于的线性回归方程;
(2)利用(1)中的回归方程,分析2014年至2018年该地区农村居民家庭人均纯收入的变化情况,并预测2019年该地区农村居民家庭人均纯收入为多少?
附:回归直线的斜率和截距的最小二乘估计公式分别为.